Skip to content

Operations on the Grassmannian: quantum Pieri rules, quantum Giambelli formulae, manipulation of Schubert classes.

License

Notifications You must be signed in to change notification settings

passagemath/passagemath-pkg-schubertpy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

schubertpy

codecov Coverage evolution PR Coverage

Overview

schubertpy is a powerful Python package designed for performing advanced mathematical operations on the Grassmannian, a key concept in algebraic geometry and representation theory. This module facilitates operations such as quantum Pieri rules, quantum Giambelli formulae, and the manipulation of Schubert classes. It is a Python implementation based on the comprehensive maple library available at https://sites.math.rutgers.edu/~asbuch/qcalc/.

References:

Features

  • Quantum Pieri Rule Calculations: Efficient computation of quantum Pieri rules applied to Schubert classes.
  • Quantum Giambelli Formulae: Expression of products of Schubert classes in alternative forms using quantum Giambelli formulae.
  • Schubert Class Operations: Perform actions and multiplications on Schubert classes, in both classical and quantum contexts.
  • Dualization and Conversion: Dualize Schubert classes and convert between different Schubert class representations.

Installation

To install the schubertpy module, run the following command:

pip install schubertpy

If you wanna use with sagemath, run the following command:

sage -pip install schubertpy

Usage

Example on Google Colab

Example usage demonstrating the capabilities of schubertpy:

from schubertpy import Grassmannian, OrthogonalGrassmannian, IsotropicGrassmannian

def main():
    # Initialize the Grassmannian object with dimensions
    gr = Grassmannian(2, 5)
    print(gr.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(gr.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(gr.qgiambelli('S[2,1]*S[2,1]'))
    print(gr.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(gr.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(gr.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(gr.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(gr.giambelli('S[2,1]*S[2,1]'))
    print(gr.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(gr.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(gr.dualize('S[1]+S[2]'))


    ig = IsotropicGrassmannian(2, 6)
    print(ig.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(ig.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(ig.qgiambelli('S[2,1]*S[2,1]'))
    print(ig.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(ig.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(ig.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(ig.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(ig.giambelli('S[2,1]*S[2,1]'))
    print(ig.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(ig.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(ig.dualize('S[1]+S[2]'))

    og = OrthogonalGrassmannian(2, 7)
    print(og.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.qgiambelli('S[2,1]*S[2,1]'))
    print(og.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.giambelli('S[2,1]*S[2,1]'))
    print(og.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.dualize('S[1]+S[2]'))

    og = OrthogonalGrassmannian(2, 6)
    print(og.qpieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.qact('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.qgiambelli('S[2,1]*S[2,1]'))
    print(og.qmult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.qtoS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.pieri(1, 'S[2,1] - 7*S[3,2]'))
    print(og.act('S[1]+S[2]*S[3]', 'S[2,1]+S[3,2]'))
    print(og.giambelli('S[2,1]*S[2,1]'))
    print(og.mult('S[2,1]', 'S[2,1]+S[3,2]'))
    print(og.toS('S[2,1]*S[2,1]*S[2,1]'))
    print(og.dualize('S[1]+S[2]'))


if __name__ == "__main__":
    main()

You wanna use with sagemath? You can save above example to main.py and then run:

sage -python main.py

For detailed examples and more operations, refer to the test cases provided within the module's documentation.

Running Tests

To verify the module's functionality, you can run the included tests with either of the following commands:

make test

Or directly with Python:

python3 -m unittest schubertpy/testcases/*.py

Authors

Contributing

We highly encourage contributions to schubertpy. Whether you are looking to expand functionality, enhance performance, or fix bugs, your input is valuable. To get started:

  • Report Issues: If you encounter issues or have suggestions, please report them by creating an issue on our GitHub page.
  • Submit Pull Requests: Feel free to fork the repository and submit pull requests. Whether it's adding new features, optimizing existing code, or correcting bugs, your contributions are welcome.

Please ensure your pull requests are well-documented and include any necessary tests. For more details on contributing, refer to our contribution guidelines on GitHub.

License

schubertpy is open source software (under the GNU General Public License).

Citing

We encourage you to cite our work if you have used our package. See "Cite this repository" on this page.

Documentation

About

Operations on the Grassmannian: quantum Pieri rules, quantum Giambelli formulae, manipulation of Schubert classes.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 87.4%
  • JetBrains MPS 12.3%
  • Makefile 0.3%