Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions DDQN/ddqn_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def sample_memory(self):

states = T.tensor(state).to(self.q_eval.device)
rewards = T.tensor(reward).to(self.q_eval.device)
dones = T.tensor(done).to(self.q_eval.device)
dones = T.tensor(done, dtype=T.bool).to(self.q_eval.device)
actions = T.tensor(action).to(self.q_eval.device)
states_ = T.tensor(new_state).to(self.q_eval.device)

Expand Down Expand Up @@ -83,7 +83,7 @@ def learn(self):
q_next = self.q_next.forward(states_)
q_eval = self.q_eval.forward(states_)

max_actions = T.argmax(q_eval, dim=1)
max_actions = T.argmax(q_eval, dim=1).detach()
q_next[dones] = 0.0

q_target = rewards + self.gamma*q_next[indices, max_actions]
Expand Down
2 changes: 1 addition & 1 deletion DQN/dqn_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def sample_memory(self):

states = T.tensor(state).to(self.q_eval.device)
rewards = T.tensor(reward).to(self.q_eval.device)
dones = T.tensor(done).to(self.q_eval.device)
dones = T.tensor(done, dtype=T.bool).to(self.q_eval.device)
actions = T.tensor(action).to(self.q_eval.device)
states_ = T.tensor(new_state).to(self.q_eval.device)

Expand Down
4 changes: 2 additions & 2 deletions DuelingDDQN/dueling_ddqn_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def sample_memory(self):

states = T.tensor(state).to(self.q_eval.device)
rewards = T.tensor(reward).to(self.q_eval.device)
dones = T.tensor(done).to(self.q_eval.device)
dones = T.tensor(done, dtype=T.bool).to(self.q_eval.device)
actions = T.tensor(action).to(self.q_eval.device)
states_ = T.tensor(new_state).to(self.q_eval.device)

Expand Down Expand Up @@ -92,7 +92,7 @@ def learn(self):

q_eval = T.add(V_s_eval, (A_s_eval - A_s_eval.mean(dim=1,keepdim=True)))

max_actions = T.argmax(q_eval, dim=1)
max_actions = T.argmax(q_eval, dim=1).detach()
q_next[dones] = 0.0

q_target = rewards + self.gamma*q_next[indices, max_actions]
Expand Down
2 changes: 1 addition & 1 deletion DuelingDQN/dueling_dqn_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ def sample_memory(self):

states = T.tensor(state).to(self.q_eval.device)
rewards = T.tensor(reward).to(self.q_eval.device)
dones = T.tensor(done).to(self.q_eval.device)
dones = T.tensor(done, dtype=T.bool).to(self.q_eval.device)
actions = T.tensor(action).to(self.q_eval.device)
states_ = T.tensor(new_state).to(self.q_eval.device)

Expand Down