query_strategiesmodify the active learning strategies to serve a streaming pool
simple_linreg_exp.pyis the experiment for linear regression. Specify parameters as follows:
-n := num_rounds (default = 10)
-c := num_coeffs (default = 5)
-s := initial_sample_sz (default = 20)
-p := pool_sz (default = 1000)
-b := budget (default = 10)
-i := iter_per_algo (default = 10)
-v := verbose mode (default = false)
-m := flag to turn on measurement error (default=false)
Example run command:
python3 simple_linreg_exp.py -n 1000 -c 2 -b 1 -p 1000 -i 25
logreg_experiment.pyrecreates our results for the logistic regression experiement. Example run command:
python3 logreg_experiment.py
multivar-exp.pyis the experiment for multiple linear regression. Specify parameters as follows:
-c := num_coeffs (default = 5)
-m := flag to turn on measurement error (default=false)
-v := verbose mode (default = false)
Example run command:
python3 multivar-exp.py -c 5
- To format code, run
black . - To lint code, run
flake8 . - To install requirements, run
pip install -r requirements.txt
- Fork this Repo
- Clone the Repo onto your computer -- You may need to setup an SSH Key on your device.
- Run
pip install -r requirements.txtto get all the packages you need.
- Create a branch (
git checkout -b new-feature) - Make Changes
- Run necessary quality assurance tools
- Add your changes (
git commit -am "Commit Message"orgit add <whatever files/folders you want to add>followed bygit commit -m "Commit Message") - Push your changes to the repo (
git push origin new-feature) - Create a pull request
black formatter automatically formats code
- Run
pip install blackto get the package. - After making changes, run
black ./.
flake8 lints code
Notifies you if any code is not currently up to Python standards.
- Run
pip install flake8to get the package. - After making changes, run
flake8.