Releases: posit-dev/querychat
[py] querychat 0.5.1
New features
QueryChat()now supports deferred data source initialization for Shiny Core applications. Passdata_source=Noneat initialization time, then provide the actual data source via thedata_sourceparameter ofserver()or by setting thedata_sourceproperty. This enables use cases where the data source depends on session-specific authentication or per-user database connections. (#202)
[py] querychat 0.5.0
New features
- Added support for Gradio, Dash, and Streamlit web frameworks in addition to Shiny. Import from the new submodules:
from querychat.gradio import QueryChatfrom querychat.dash import QueryChatfrom querychat.streamlit import QueryChat
Each framework's QueryChat provides .app() for quick standalone apps and .ui() for custom layouts. Install framework dependencies with pip extras: pip install querychat[gradio], pip install querychat[dash], or pip install querychat[streamlit]. (#190)
QueryChat()gains support for more data sources:polars.LazyFrame: queries execute lazily viapolars.SQLContext. In this case,.df()et al. methods will return apolars.LazyFrame. (#191)ibis.Table: queries execute lazily via the Ibis backend's SQL interface (DuckDB, PostgreSQL, BigQuery, etc.). In this case,.df()et al. methods will return anibis.Table. (#193)pyarrow.Table: queries execute in-memory viaduckdb. In this case,.df()et al. methods will return apyarrow.Table. (#196)
Improvements
- Improved typing support for return types on
.df()et al. (#196)
Changes
DataFrameSourcemethods now (once again) return the input DataFrame type (e.g.,pandas.DataFrame) instead ofnw.DataFrame. (#196)
[py] querychat 0.4.0
Breaking Changes
- Methods like
execute_query(),get_data(), anddf()now return anarwhals.DataFrameinstead of apandas.DataFrame. This allows querychat to drop itspandasdependency, and for you to use anynarwhals-compatible dataframe of your choosing.- If this breaks existing code, note you can call
.to_native()on the new dataframe value to get yourpandasdataframe back. - Note that
polarsorpandaswill be needed to realize asqlalchemyconnection query as a dataframe. Install withpip install querychat[pandas]orpip install querychat[polars]
- If this breaks existing code, note you can call
New features
-
QueryChat.console()was added to launch interactive console-based chat sessions with your data source, with persistent conversation state across invocations. (#168) -
QueryChat.client()can now create standalone querychat-enabled chat clients with configurable tools and callbacks, enabling use outside of Shiny applications. (#168) -
The tools used in a
QueryChatchatbot are now configurable. Use the newtoolsparameter ofQueryChat()to select either or both"query"or"update"tools. Choosetools=["update"]if you only want QueryChat to be able to update the dashboard (useful when you want to be 100% certain that the LLM will not see any raw data). (#168) -
QueryChat.sidebar(),QueryChat.ui(), andQueryChat.server()now support an optionalidparameter to create multiple chat instances from a singleQueryChatobject. (#172)
Improvements
-
The update tool now requires that the SQL query returns all columns from the original data source, ensuring that the dashboard can display the complete data frame after filtering or sorting. If the query does not return all columns, an informative error message will be provided. (#180)
-
Obvious SQL keywords that lead to data modification (e.g.,
INSERT,UPDATE,DELETE,DROP, etc.) are now prohibited in queries run via the query tool or update tool, to prevent accidental data changes. If such keywords are detected, an informative error message will be provided. (#180)
[r] querychat 0.2.0
-
The update tool now requires that the SQL query returns all columns from the original data source, ensuring that the dashboard can display the complete data frame after filtering or sorting. If the query does not return all columns, an informative error message will be provided. (#180)
-
Obvious SQL keywords that lead to data modification (e.g.,
INSERT,UPDATE,DELETE,DROP, etc.) are now prohibited in queries run via the query tool or update tool, to prevent accidental data changes. If such keywords are detected, an informative error message will be provided. (#180) -
querychat()andQueryChat$new()now use either{duckdb}or{SQLite}for the in-memory database backend for data frames, depending on which package is installed. If both are installed,{duckdb}will be preferred. You can explicitly choose theengineinDataFrameSource$new()or setquerychat.DataFrameSource.engineoption to choose a global default. (#178) -
QueryChat$sidebar(),QueryChat$ui(), andQueryChat$server()now support an optionalidparameter to enable use within Shiny modules. When used in a module UI function, passid = ns("your_id")wherensis the namespacing function fromshiny::NS(). In the corresponding module server function, pass the unwrapped ID toQueryChat$server(id = "your_id"). This enables multiple independent QueryChat instances from the same QueryChat object. (#172) -
QueryChat$client()can now create standalone querychat-enabled chat clients with configurable tools and callbacks, enabling use outside of Shiny applications. (#168) -
QueryChat$console()was added to launch interactive console-based chat sessions with your data source, with persistent conversation state across invocations. (#168) -
The tools used in a
QueryChatchatbot are now configurable. Use the newtoolsparameter ofquerychat()orQueryChat$new()to select either or both"query"or"update"tools. Choosetools = "update"if you only want QueryChat to be able to update the dashboard (useful when you want to be 100% certain that the LLM will not see any raw data). (#168) -
querychat_app()will now only automatically clean up the data source if QueryChat creates the data source internally from a data frame. (#164) -
Breaking change: The
$sql()method now returnsNULLinstead of""(empty string) when no query has been set, aligning with the behavior of$title()for consistency. Most code usingisTruthy()or similar falsy checks will continue working without changes. Code that explicitly checkssql() == ""should be updated to use falsy checks (e.g.,!isTruthy(sql())) or explicit null checks (is.null(sql())). (#146) -
Tool detail cards can now be expanded or collapsed by default when querychat runs a query or updates the dashboard via the
querychat.tool_detailsR option or theQUERYCHAT_TOOL_DETAILSenvironment variable. Valid values are"expanded","collapsed", or"default". (#137) -
Added bookmarking support to
QueryChat$server()andquerychat_app(). When bookmarking is enabled (viabookmark_store = "url"or"server"inquerychat_app()or$app_obj(), or viaenable_bookmarking = TRUEin$server()), the chat state (including current query, title, and chat history) will be saved and restored with Shiny bookmarks. (#107) -
Nearly the entire functional API (i.e.,
querychat_init(),querychat_sidebar(),querychat_server(), etc) has been hard deprecated in favor of a simpler OOP-based API. Namely, the newQueryChat$new()class is now the main entry point (instead ofquerychat_init()) and has methods to replace old functions (e.g.,$sidebar(),$server(), etc). (#109)- In addition,
querychat_data_source()was renamed toas_querychat_data_source(), and remains exported for a developer extension point, but users no longer have to explicitly create a data source. (#109)
- In addition,
-
Added
prompt_templatesupport forquerychat_system_prompt(). (Thank you, @oacar! #37, #45) -
querychat_init()now accepts aclient, replacing the previouscreate_chat_funcargument. (#60)The
clientcan be:- an
ellmer::Chatobject, - a function that returns an
ellmer::Chatobject, - or a provider-model string, e.g.
"openai/gpt-4.1", to be passed toellmer::chat().
If
clientis not provided, querychat will use- the
querychat.clientR option, which can be any of the above options, - the
QUERYCHAT_CLIENTenvironment variable, which should be a provider-model string, - or the default model from
ellmer::chat_openai().
- an
-
querychat_server()now uses ashiny::ExtendedTaskfor streaming the chat response, which allows the dashboard to update and remain responsive while the chat response is streaming in. (#63) -
querychat now requires
ellmerversion 0.3.0 or later and uses rich tool cards for dashboard updates and database queries. (#65) -
New
querychat_app()function lets you quickly launch a Shiny app with a querychat chat interface. (#66) -
querychat_ui()now adds a.querychatclass to the chat container andquerychat_sidebar()adds a.querychat-sidebarclass to the sidebar, allowing for easier customization via CSS. (#68) -
querychat now uses a separate tool to reset the dashboard. (#80)
-
querychat_greeting()can be used to generate a greeting message for your querychat bot. (#87) -
querychat's system prompt and tool descriptions were rewritten for clarity and future extensibility. (#90)
[py] querychat 0.3.0
Breaking Changes
-
The entire functional API (i.e.,
init(),sidebar(),server(), etc) has been hard deprecated in favor of a simpler OOP-based API. Namely, the newQueryChat()class is now the main entry point (instead ofinit()) and has methods to replace old functions (e.g.,.sidebar(),.server(), etc). (#101) -
The
.sql()method now returnsNoneinstead of""(empty string) when no query has been set, aligning with the behavior of.title()for consistency. Most code using theoroperator orreq()for falsy checks will continue working without changes. Code that explicitly checkssql() == ""should be updated to use falsy checks (if not sql()) or explicit null checks (if sql() is None). (#146)
New features
-
New
QueryChat.app()method enables quicker/easier chatting with a dataset. (#104) -
Enabled bookmarking by default in both
.app()and.server()methods. In latter case, you'll need to also specify thebookmark_store(either inshiny.App()orshiny.express.app_opts()) for it to take effect. (#104) -
The current SQL query and title can now be programmatically set through the
.sql()and.title()methods ofQueryChat(). (#98, #101) -
New
querychat.datamodule provides sample datasets (titanic()andtips()) to make it easier to get started without external dependencies. (#118) -
Added a
.generate_greeting()method to help you create a greeting message for your querychat bot. (#87) -
Added
querychat_reset_dashboard()tool for easily resetting the dashboard filters when asked by the user. (#81)
Improvements
-
Added rich tool UI support using shinychat development version and chatlas >= 0.11.1. (#67)
-
querychat's system prompt and tool descriptions were rewritten for clarity and future extensibility. (#90)
-
Tool detail cards can now be expanded or collapsed by default when querychat runs a query or updates the dashboard via the
QUERYCHAT_TOOL_DETAILSenvironment variable. Valid values are"expanded","collapsed", or"default". (#137)
[py] querychat v0.2.2
- Fixed another issue with data sources that aren't already narwhals DataFrames (#83)
[py] querychat v0.2.1
[py] querychat v0.2.0
-
querychat.init()now accepts aclientargument, replacing the previouscreate_chat_callbackargument. (#60)The
clientcan be:- a
chatlas.Chatobject, - a function that returns a
chatlas.Chatobject, - or a provider-model string, e.g.
"openai/gpt-4.1", to be passed tochatlas.ChatAuto().
If
clientis not provided, querychat will use theQUERYCHAT_CLIENTenvironment variable, which should be a provider-model string. If the envvar is not set, querychat uses OpenAI with the default model fromchatlas.ChatOpenAI(). - a
-
querychat.ui()now adds a.querychatclass to the chat container andquerychat.sidebar()adds a.querychat-sidebarclass to the sidebar, allowing for easier customization via CSS. (#68)