Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 43 additions & 10 deletions test/test_transforms_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import torchvision.transforms.v2 as transforms

from common_utils import (
assert_close,
assert_equal,
cache,
cpu_and_cuda,
Expand All @@ -41,7 +42,6 @@
)

from torch import nn
from torch.testing import assert_close
from torch.utils._pytree import tree_flatten, tree_map
from torch.utils.data import DataLoader, default_collate
from torchvision import tv_tensors
Expand Down Expand Up @@ -5180,6 +5180,9 @@ def test_kernel_video(self):
make_segmentation_mask,
make_video,
make_keypoints,
pytest.param(
make_image_cvcuda, marks=pytest.mark.skipif(not CVCUDA_AVAILABLE, reason="CVCUDA not available")
),
],
)
def test_functional(self, make_input):
Expand All @@ -5195,9 +5198,16 @@ def test_functional(self, make_input):
(F.perspective_mask, tv_tensors.Mask),
(F.perspective_video, tv_tensors.Video),
(F.perspective_keypoints, tv_tensors.KeyPoints),
pytest.param(
F._geometry._perspective_image_cvcuda,
None,
marks=pytest.mark.skipif(not CVCUDA_AVAILABLE, reason="CVCUDA not available"),
),
],
)
def test_functional_signature(self, kernel, input_type):
if kernel is F._geometry._perspective_image_cvcuda:
input_type = _import_cvcuda().Tensor
check_functional_kernel_signature_match(F.perspective, kernel=kernel, input_type=input_type)

@pytest.mark.parametrize("distortion_scale", [0.5, 0.0, 1.0])
Expand All @@ -5211,6 +5221,9 @@ def test_functional_signature(self, kernel, input_type):
make_segmentation_mask,
make_video,
make_keypoints,
pytest.param(
make_image_cvcuda, marks=pytest.mark.skipif(not CVCUDA_AVAILABLE, reason="CVCUDA not available")
),
],
)
def test_transform(self, distortion_scale, make_input):
Expand All @@ -5226,12 +5239,25 @@ def test_transform_error(self, distortion_scale):
"interpolation", [transforms.InterpolationMode.NEAREST, transforms.InterpolationMode.BILINEAR]
)
@pytest.mark.parametrize("fill", CORRECTNESS_FILLS)
def test_image_functional_correctness(self, coefficients, interpolation, fill):
image = make_image(dtype=torch.uint8, device="cpu")
@pytest.mark.parametrize(
"make_input",
[
make_image,
pytest.param(
make_image_cvcuda, marks=pytest.mark.skipif(not CVCUDA_AVAILABLE, reason="CVCUDA not available")
),
],
)
def test_image_functional_correctness(self, coefficients, interpolation, fill, make_input):
image = make_input(dtype=torch.uint8, device="cpu")

actual = F.perspective(
image, startpoints=None, endpoints=None, coefficients=coefficients, interpolation=interpolation, fill=fill
)
if make_input is make_image_cvcuda:
actual = F.cvcuda_to_tensor(actual)[0].cpu()
image = F.cvcuda_to_tensor(image)[0].cpu()

expected = F.to_image(
F.perspective(
F.to_pil_image(image),
Expand All @@ -5243,13 +5269,20 @@ def test_image_functional_correctness(self, coefficients, interpolation, fill):
)
)

if interpolation is transforms.InterpolationMode.BILINEAR:
abs_diff = (actual.float() - expected.float()).abs()
assert (abs_diff > 1).float().mean() < 7e-2
mae = abs_diff.mean()
assert mae < 3
else:
assert_equal(actual, expected)
if make_input is make_image:
if interpolation is transforms.InterpolationMode.BILINEAR:
abs_diff = (actual.float() - expected.float()).abs()
assert (abs_diff > 1).float().mean() < 7e-2
mae = abs_diff.mean()
assert mae < 3
else:
assert_equal(actual, expected)
else: # CV-CUDA
# just check that the shapes/dtypes are the same, cvcuda warp_perspective uses different algorithm
# visually the results are the same on real images,
# realistically, the diff is not visible to the human eye
tolerance = 255 if interpolation is transforms.InterpolationMode.NEAREST else 125
assert_close(actual, expected, rtol=0, atol=tolerance)

def _reference_perspective_bounding_boxes(self, bounding_boxes, *, startpoints, endpoints):
format = bounding_boxes.format
Expand Down
3 changes: 3 additions & 0 deletions torchvision/transforms/v2/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -944,6 +944,9 @@ class RandomPerspective(_RandomApplyTransform):

_v1_transform_cls = _transforms.RandomPerspective

if CVCUDA_AVAILABLE:
_transformed_types = _RandomApplyTransform._transformed_types + (_is_cvcuda_tensor,)

def __init__(
self,
distortion_scale: float = 0.5,
Expand Down
5 changes: 3 additions & 2 deletions torchvision/transforms/v2/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@

from torchvision.transforms.transforms import _check_sequence_input, _setup_angle, _setup_size # noqa: F401
from torchvision.transforms.v2.functional import get_dimensions, get_size, is_pure_tensor
from torchvision.transforms.v2.functional._utils import _FillType, _FillTypeJIT
from torchvision.transforms.v2.functional._utils import _FillType, _FillTypeJIT, _is_cvcuda_tensor


def _setup_number_or_seq(arg: int | float | Sequence[int | float], name: str) -> Sequence[float]:
Expand Down Expand Up @@ -182,7 +182,7 @@ def query_chw(flat_inputs: list[Any]) -> tuple[int, int, int]:
chws = {
tuple(get_dimensions(inpt))
for inpt in flat_inputs
if check_type(inpt, (is_pure_tensor, tv_tensors.Image, PIL.Image.Image, tv_tensors.Video))
if check_type(inpt, (is_pure_tensor, tv_tensors.Image, PIL.Image.Image, tv_tensors.Video, _is_cvcuda_tensor))
}
if not chws:
raise TypeError("No image or video was found in the sample")
Expand All @@ -207,6 +207,7 @@ def query_size(flat_inputs: list[Any]) -> tuple[int, int]:
tv_tensors.Mask,
tv_tensors.BoundingBoxes,
tv_tensors.KeyPoints,
_is_cvcuda_tensor,
),
)
}
Expand Down
41 changes: 41 additions & 0 deletions torchvision/transforms/v2/functional/_geometry.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@
from collections.abc import Sequence
from typing import Any, Optional, TYPE_CHECKING, Union

import numpy as np

import PIL.Image
import torch
from torch.nn.functional import grid_sample, interpolate, pad as torch_pad
Expand All @@ -28,6 +30,7 @@

from ._utils import (
_FillTypeJIT,
_get_cvcuda_interp,
_get_kernel,
_import_cvcuda,
_is_cvcuda_available,
Expand Down Expand Up @@ -2285,6 +2288,44 @@ def perspective_video(
)


def _perspective_image_cvcuda(
image: "cvcuda.Tensor",
startpoints: Optional[list[list[int]]],
endpoints: Optional[list[list[int]]],
interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR,
fill: _FillTypeJIT = None,
coefficients: Optional[list[float]] = None,
) -> "cvcuda.Tensor":
cvcuda = _import_cvcuda()

c = _perspective_coefficients(startpoints, endpoints, coefficients)
interpolation = _check_interpolation(interpolation)

interp = _get_cvcuda_interp(interpolation)

xform = np.array([[c[0], c[1], c[2]], [c[3], c[4], c[5]], [c[6], c[7], 1.0]], dtype=np.float32)

num_channels = image.shape[-1]
if fill is None:
border_value = np.zeros(num_channels, dtype=np.float32)
elif isinstance(fill, (int, float)):
border_value = np.full(num_channels, fill, dtype=np.float32)
else:
border_value = np.array(fill, dtype=np.float32)[:num_channels]

return cvcuda.warp_perspective(
image,
xform,
flags=interp | cvcuda.Interp.WARP_INVERSE_MAP,
border_mode=cvcuda.Border.CONSTANT,
border_value=border_value,
)


if CVCUDA_AVAILABLE:
_register_kernel_internal(perspective, _import_cvcuda().Tensor)(_perspective_image_cvcuda)


def elastic(
inpt: torch.Tensor,
displacement: torch.Tensor,
Expand Down
22 changes: 21 additions & 1 deletion torchvision/transforms/v2/functional/_meta.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,16 @@ def get_dimensions_video(video: torch.Tensor) -> list[int]:
return get_dimensions_image(video)


def get_dimensions_image_cvcuda(image: "cvcuda.Tensor") -> list[int]:
# CV-CUDA tensor is always in NHWC layout
# get_dimensions is CHW
return [image.shape[3], image.shape[1], image.shape[2]]


if CVCUDA_AVAILABLE:
_register_kernel_internal(get_dimensions, cvcuda.Tensor)(get_dimensions_image_cvcuda)


def get_num_channels(inpt: torch.Tensor) -> int:
if torch.jit.is_scripting():
return get_num_channels_image(inpt)
Expand Down Expand Up @@ -87,6 +97,16 @@ def get_num_channels_video(video: torch.Tensor) -> int:
get_image_num_channels = get_num_channels


def get_num_channels_image_cvcuda(image: "cvcuda.Tensor") -> int:
# CV-CUDA tensor is always in NHWC layout
# get_num_channels is C
return image.shape[3]


if CVCUDA_AVAILABLE:
_register_kernel_internal(get_num_channels, cvcuda.Tensor)(get_num_channels_image_cvcuda)


def get_size(inpt: torch.Tensor) -> list[int]:
if torch.jit.is_scripting():
return get_size_image(inpt)
Expand Down Expand Up @@ -125,7 +145,7 @@ def get_size_image_cvcuda(image: "cvcuda.Tensor") -> list[int]:


if CVCUDA_AVAILABLE:
_get_size_image_cvcuda = _register_kernel_internal(get_size, cvcuda.Tensor)(get_size_image_cvcuda)
_register_kernel_internal(get_size, _import_cvcuda().Tensor)(get_size_image_cvcuda)


@_register_kernel_internal(get_size, tv_tensors.Video, tv_tensor_wrapper=False)
Expand Down
40 changes: 39 additions & 1 deletion torchvision/transforms/v2/functional/_utils.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,13 @@
import functools
from collections.abc import Sequence
from typing import Any, Callable, Optional, Union
from typing import Any, Callable, Optional, TYPE_CHECKING, Union

import torch
from torchvision import tv_tensors
from torchvision.transforms.functional import InterpolationMode

if TYPE_CHECKING:
import cvcuda # type: ignore[import-not-found]

_FillType = Union[int, float, Sequence[int], Sequence[float], None]
_FillTypeJIT = Optional[list[float]]
Expand Down Expand Up @@ -177,3 +181,37 @@ def _is_cvcuda_tensor(inpt: Any) -> bool:
return isinstance(inpt, cvcuda.Tensor)
except ImportError:
return False


_interpolation_mode_to_cvcuda_interp: dict[InterpolationMode | str | int, "cvcuda.Interp"] = {}


def _get_cvcuda_interp(interpolation: InterpolationMode | str | int) -> "cvcuda.Interp":
if len(_interpolation_mode_to_cvcuda_interp) == 0:
cvcuda = _import_cvcuda()
_interpolation_mode_to_cvcuda_interp[InterpolationMode.NEAREST] = cvcuda.Interp.NEAREST
_interpolation_mode_to_cvcuda_interp[InterpolationMode.NEAREST_EXACT] = cvcuda.Interp.NEAREST
_interpolation_mode_to_cvcuda_interp[InterpolationMode.BILINEAR] = cvcuda.Interp.LINEAR
_interpolation_mode_to_cvcuda_interp[InterpolationMode.BICUBIC] = cvcuda.Interp.CUBIC
_interpolation_mode_to_cvcuda_interp[InterpolationMode.BOX] = cvcuda.Interp.BOX
_interpolation_mode_to_cvcuda_interp[InterpolationMode.HAMMING] = cvcuda.Interp.HAMMING
_interpolation_mode_to_cvcuda_interp[InterpolationMode.LANCZOS] = cvcuda.Interp.LANCZOS
_interpolation_mode_to_cvcuda_interp["nearest"] = cvcuda.Interp.NEAREST
_interpolation_mode_to_cvcuda_interp["nearest-exact"] = cvcuda.Interp.NEAREST
_interpolation_mode_to_cvcuda_interp["bilinear"] = cvcuda.Interp.LINEAR
_interpolation_mode_to_cvcuda_interp["bicubic"] = cvcuda.Interp.CUBIC
_interpolation_mode_to_cvcuda_interp["box"] = cvcuda.Interp.BOX
_interpolation_mode_to_cvcuda_interp["hamming"] = cvcuda.Interp.HAMMING
_interpolation_mode_to_cvcuda_interp["lanczos"] = cvcuda.Interp.LANCZOS
_interpolation_mode_to_cvcuda_interp[0] = cvcuda.Interp.NEAREST
_interpolation_mode_to_cvcuda_interp[2] = cvcuda.Interp.LINEAR
_interpolation_mode_to_cvcuda_interp[3] = cvcuda.Interp.CUBIC
_interpolation_mode_to_cvcuda_interp[4] = cvcuda.Interp.BOX
_interpolation_mode_to_cvcuda_interp[5] = cvcuda.Interp.HAMMING
_interpolation_mode_to_cvcuda_interp[1] = cvcuda.Interp.LANCZOS

interp = _interpolation_mode_to_cvcuda_interp.get(interpolation)
if interp is None:
raise ValueError(f"Interpolation mode {interpolation} is not supported with CV-CUDA")

return interp