Skip to content

Dynamic FastMCP extends the Model Context Protocol Python server with context-aware tools that adapt their behavior and descriptions based on user, tenant, and request context.

Notifications You must be signed in to change notification settings

ragieai/dynamic-fastmcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Dynamic FastMCP

Dynamic FastMCP

Dynamic FastMCP is a Python library that extends the Official Model Context Protocol (MCP) Python SDK with dynamic tool capabilities. It allows you to create MCP tools that can adapt their behavior and descriptions based on request context, user information, and path parameters.

Using Dynamic FastMCP to power Context-Aware Tools at Ragie

Dynamic FastMCP is used to power our multi-tenant Streamable HTTP MCP Server at Ragie. To learn more about how we use it in production, check out our blog post on Making MCP Tool Use Feel Natural with Context-Aware Tools.

Features

  • Dynamic Tool Descriptions: Tool descriptions that change based on context (user, request path, etc.)
  • Context-Aware Tool Execution: Tools that can access request context during execution
  • Hybrid Tool Support: Seamlessly combines regular MCP tools with dynamic tools
  • FastAPI Integration: Easily mount on FastAPI applications with authentication
  • Multi-tenant Support: Perfect for applications where tool behavior varies per user or tenant

Installation

pip install dynamic-fastmcp

Or using UV:

uv add dynamic-fastmcp

Quick Start

Basic Usage

from dynamic_fastmcp import DynamicFastMCP, DynamicTool
from mcp.server.fastmcp import Context

# Create a Dynamic FastMCP instance
mcp = DynamicFastMCP()

# Regular tool - works just like standard FastMCP
@mcp.tool(description="Echoes the input text")
def echo(text: str, ctx: Context):
    return f"Echo: {text}"

# Dynamic tool - description and behavior adapt to context
@mcp.tool()
class PersonalizedEcho(DynamicTool):
    def name(self) -> str:
        return "personalized_echo"

    def structured_output(self) -> bool | None:
        return True

    async def handle_description(self, ctx: Context) -> str:
        user = ctx.request_context.request.user
        return f"Echoes text with personalization for {user.username}"

    async def handle_call(self, text: str, ctx: Context) -> str:
        user = ctx.request_context.request.user
        return f"Hello {user.username}, you said: {text}"

FastAPI Integration

from fastapi import FastAPI
from dynamic_fastmcp import DynamicFastMCP
from mcp.server.auth.provider import TokenVerifier, AccessToken

app = FastAPI()

class CustomTokenVerifier(TokenVerifier):
    async def verify_token(self, token: str) -> AccessToken | None:
        # Implement your token verification logic
        if token == "valid_token":
            return AccessToken(token=token, client_id="client_123", scopes=[])
        return None

# Create MCP instance with authentication
mcp = DynamicFastMCP(
    streamable_http_path="/",
    token_verifier=CustomTokenVerifier(),
)

# Mount MCP at different paths for multi-tenant support
app.mount("/mcp/{id}", app=mcp.streamable_http_app())

Dynamic Tools

Dynamic tools implement the DynamicTool protocol and provide context-aware functionality:

Required Methods

  • name()str: Return the tool name
  • structured_output()bool | None: Whether the tool returns structured output
  • handle_description(ctx: Context)Awaitable[str]: Return context-aware description
  • handle_call(*args, **kwargs)Awaitable[Any]: Handle the tool execution

Example: Multi-tenant Tool

@mcp.tool()
class TenantSpecificTool(DynamicTool):
    def name(self) -> str:
        return "tenant_tool"

    def structured_output(self) -> bool | None:
        return True

    async def handle_description(self, ctx: Context) -> str:
        tenant_id = ctx.request_context.request.path_params.get("id")
        return f"Performs tenant-specific operations for tenant {tenant_id}"

    async def handle_call(self, action: str, ctx: Context) -> str:
        tenant_id = ctx.request_context.request.path_params.get("id")
        user = ctx.request_context.request.user.username
        return f"Executing '{action}' for tenant {tenant_id} by user {user}"

Example: User-aware Tool

@mcp.tool()
class UserDashboard(DynamicTool):
    def name(self) -> str:
        return "dashboard"

    def structured_output(self) -> bool | None:
        return True

    async def handle_description(self, ctx: Context) -> str:
        username = ctx.request_context.request.user.username
        return f"Access dashboard data for {username}"

    async def handle_call(self, widget: str, ctx: Context) -> dict:
        username = ctx.request_context.request.user.username
        # Fetch user-specific data
        return {
            "user": username,
            "widget": widget,
            "data": f"User-specific {widget} data for {username}"
        }

Architecture

Core Components

  • DynamicFastMCP: Enhanced FastMCP server that supports both regular and dynamic tools
  • DynamicTool: Protocol defining the interface for dynamic tools
  • DynamicToolWrapper: Internal wrapper that adapts dynamic tools to the MCP tool interface
  • DynamicToolManager: Manages both regular and dynamic tools, handling tool resolution and execution

Tool Resolution Flow

  1. When tools are listed, dynamic tools resolve their descriptions using the current context
  2. During execution, dynamic tools receive the full context including request information
  3. The system automatically handles parameter validation and result conversion

Authentication & Security

Dynamic FastMCP supports the standard MCP authentication patterns:

from mcp.server.auth.provider import TokenVerifier, AccessToken
from mcp.server.auth.settings import AuthSettings
from pydantic import AnyHttpUrl

class MyTokenVerifier(TokenVerifier):
    async def verify_token(self, token: str) -> AccessToken | None:
        # Your verification logic here
        pass

mcp = DynamicFastMCP(
    token_verifier=MyTokenVerifier(),
    auth=AuthSettings(
        resource_server_url=AnyHttpUrl("https://your-auth-server.com"),
        issuer_url=AnyHttpUrl("https://your-auth-server.com"),
    ),
)

Testing

Run the test suite:

uv run pytest

The project includes comprehensive tests covering:

  • Dynamic tool registration and execution
  • Context handling
  • Integration with FastAPI
  • Multi-tenant scenarios

Use Cases

Multi-tenant SaaS Applications

Tools that behave differently based on tenant context:

# Tool descriptions and behavior adapt per tenant
GET /mcp/tenant_123  # Tools show tenant_123 specific descriptions
GET /mcp/tenant_456  # Same tools, different descriptions for tenant_456

User-specific Tools

Tools that provide personalized functionality:

# User-aware tools that adapt to the authenticated user
@mcp.tool()
class MyFiles(DynamicTool):
    async def handle_description(self, ctx: Context) -> str:
        user = ctx.request_context.request.user.username
        return f"Manage files for {user}"

Context-sensitive Operations

Tools that change behavior based on request path or parameters:

# Same tool name, different behavior based on path
GET /mcp/development  # Development environment behavior
GET /mcp/production   # Production environment behavior

Requirements

  • Python 3.12+
  • MCP SDK 1.13.0+
  • FastAPI (for web integration)
  • Pydantic (for data validation)

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License.

Changelog

v0.1.0

  • Initial release
  • Dynamic tool support
  • FastAPI integration
  • Authentication support
  • Comprehensive test suite

About

Dynamic FastMCP extends the Model Context Protocol Python server with context-aware tools that adapt their behavior and descriptions based on user, tenant, and request context.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages