This project implements a face recognition pipeline using the AT&T Face Dataset (ORL Dataset). It includes dimensionality reduction techniques like PCA, clustering algorithms such as K-Means and GMM, and an optional Autoencoder-based feature extraction.
- Dataset Handling: Downloads and processes the AT&T Face Dataset.
- Dimensionality Reduction: Implements PCA for feature extraction and dimensionality reduction.
- Clustering:
- K-Means Clustering
- Gaussian Mixture Model (GMM)
- Autoencoders: Optional feature extraction using Autoencoders.
- Evaluation:
- Clustering accuracy using the Hungarian algorithm.
- F1 Score and Confusion Matrix visualization.