A full-stack chatbot that answers queries over recent news using Retrieval-Augmented Generation (RAG), powered by Jina embeddings, Qdrant vector search, and Gemini/OpenAI LLMs.
Link - https://drive.google.com/file/d/1Z2yCFecZvgwIIs2IYPhgSNtRgxY3Yt2k/view?usp=drive_link
- RAG pipeline with top-k context retrieval
- Gemini or OpenAI GPT for answering questions
- Vector search using Qdrant
- Chat interface with session history
- Redis-backed memory per session
- Responsive UI built with React + Tailwind CSS
- Frontend: React + Vite + Tailwind CSS
- Backend: Node.js + Express
- Vector DB: Qdrant
- Embedding: Jina AI
- LLM: Gemini (or OpenAI GPT)
- Storage: Redis Cloud (session data)
git clone https://github.com/rekha0suthar/rag-chatbot.git
cd rag-chatbot
PORT=5000
REDIS_URL=redis://default:<password>@<host>:<port>
QDRANT_URL=http://localhost:6333
JINA_API_KEY=your_jina_api_key
GEMINI_API_KEY=your_makersuite_key # OR use OPENAI_API_KEY
API_BASE=https://rag-chatbot-server.vercel.app
# backend
cd backend
npm install
node index.js
# frontend
cd frontend
npm install
npm run dev
- Frontend & Backend: Deploy to Vercel
- Redis: Use Redis Cloud free tier
- Qdrant: Use Qdrant Cloud or Docker