Skip to content

A full-stack chatbot that answers queries over recent news using Retrieval-Augmented Generation (RAG).

Notifications You must be signed in to change notification settings

rekha0suthar/rag-chatbot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 

Repository files navigation

RAG-Powered News Chatbot

A full-stack chatbot that answers queries over recent news using Retrieval-Augmented Generation (RAG), powered by Jina embeddings, Qdrant vector search, and Gemini/OpenAI LLMs.


Demo Video

Link - https://drive.google.com/file/d/1Z2yCFecZvgwIIs2IYPhgSNtRgxY3Yt2k/view?usp=drive_link

UI-overview


Features

  • RAG pipeline with top-k context retrieval
  • Gemini or OpenAI GPT for answering questions
  • Vector search using Qdrant
  • Chat interface with session history
  • Redis-backed memory per session
  • Responsive UI built with React + Tailwind CSS

Tech Stack

  • Frontend: React + Vite + Tailwind CSS
  • Backend: Node.js + Express
  • Vector DB: Qdrant
  • Embedding: Jina AI
  • LLM: Gemini (or OpenAI GPT)
  • Storage: Redis Cloud (session data)

Setup Instructions

1. Clone & Install

git clone https://github.com/rekha0suthar/rag-chatbot.git
cd rag-chatbot

2. Environment Variables

Backend .env:
PORT=5000
REDIS_URL=redis://default:<password>@<host>:<port>
QDRANT_URL=http://localhost:6333
JINA_API_KEY=your_jina_api_key
GEMINI_API_KEY=your_makersuite_key  # OR use OPENAI_API_KEY
Frontend:
API_BASE=https://rag-chatbot-server.vercel.app

3. Run

# backend
cd backend
npm install
node index.js

# frontend
cd frontend
npm install
npm run dev

Deployment

  • Frontend & Backend: Deploy to Vercel
  • Redis: Use Redis Cloud free tier
  • Qdrant: Use Qdrant Cloud or Docker

About

A full-stack chatbot that answers queries over recent news using Retrieval-Augmented Generation (RAG).

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published