pairedGSEA is an R package that helps you to run a paired differential
gene expression (DGE) and splicing (DGS) analysis. Providing a bulk RNA
count data, pairedGSEA combines the results of DESeq2 (DGE) and
DEXSeq (DGS), aggregates the p-values to gene level, and allows you to
run a subsequent gene set over-representation analysis using its
implementation of the fgsea::fora function.
pairedGSEA is published in BMC
Biology.
Please cite with citation("pairedGSEA")
Dependencies
# Install Bioconductor dependencies
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install(c("SummarizedExperiment", "S4Vectors", "DESeq2", "DEXSeq", "fgsea", "sva", "BiocParallel"))Install pairedGSEA from Bioconductor
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("pairedGSEA")Install development version from GitHub
# Install pairedGSEA from github
devtools::install_github("shdam/pairedGSEA", build_vignettes = TRUE)To view documentation for the version of this package installed in your system, start R and enter:
browseVignettes("pairedGSEA")IsoformSwitchAnalyzeR identifies, annotates, and visualizes Isoform Switches with Functional Consequences (from RNA-seq data).
Import and export between the packages with:
IsoformSwitchAnalyzeR::importPairedGSEA()IsoformSwitchAnalyzeR::exportToPairedGSEA()
Please see the User Guide vignette for a detailed description of usage.
Here is a quick run-through of the functions:
Load example data.
suppressPackageStartupMessages(library("SummarizedExperiment"))
library("pairedGSEA")
data("example_se")
example_se
#> class: SummarizedExperiment
#> dim: 5611 6
#> metadata(0):
#> assays(1): counts
#> rownames(5611): ENSG00000282880:ENST00000635453
#> ENSG00000282880:ENST00000635195 ... ENSG00000249230:ENST00000504393
#> ENSG00000249244:ENST00000505994
#> rowData names(0):
#> colnames(6): GSM1499784 GSM1499785 ... GSM1499791 GSM1499792
#> colData names(5): study id source final_description group_nrRun paired differential analysis
set.seed(500) # For reproducible results
diff_results <- paired_diff(
example_se,
group_col = "group_nr",
sample_col = "id",
baseline = 1,
case = 2,
store_results = FALSE,
quiet = TRUE
)
#> No significant surrogate variables
#> converting counts to integer mode
#> Warning in DESeqDataSet(rse, design, ignoreRank = TRUE): some variables in
#> design formula are characters, converting to factorsOver-representation analysis of results
# Define gene sets in your preferred way
gene_sets <- pairedGSEA::prepare_msigdb(
species = "Homo sapiens",
db_species = "HS",
collection = "C5",
gene_id_type = "ensembl_gene"
)
ora <- paired_ora(
paired_diff_result = diff_results,
gene_sets = gene_sets
)
#> Running over-representation analyses
#> Joining resultYou can now plot the enrichment scores against each other and identify pathways of interest.
plot_ora(
ora,
paired = FALSE # Available in version 1.1.0 and newer
) +
ggplot2::theme_classic()If you have any issues or questions regarding the use of pairedGSEA,
please do not hesitate to raise an issue on GitHub. In this way, others
may also benefit from the answers and discussions.
