Skip to content

Tropopause detection and mapping using ERA5 data with classical and new methods (stability, hygropause, hybrid).

Notifications You must be signed in to change notification settings

simoghost99/Tropopause

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tropopause Detection and Mapping

This Jupyter notebook analyzes atmospheric data using ERA5 reanalysis files. It calculates tropopause heights using multiple methods, including classical and internship-developed methods: stability, hygropause, and hybrid approaches. The analysis helps visualize global tropopause patterns, vertical profiles, and method comparisons, giving researchers insights into the structure and variability of the tropopause.


Libraries Used

  • netCDF4: Core library for reading and handling ERA5 NetCDF files.
  • xarray: For working with multidimensional ERA5 data arrays.
  • numpy: Numerical operations and array manipulations.
  • matplotlib.pyplot: 2D visualizations of tropopause data.
  • matplotlib.colors / matplotlib.patches / matplotlib.ticker: Custom colormaps, legends, and axis formatting.
  • cartopy.crs / cartopy.feature: Geospatial projections and map features (coastlines, borders).
  • scipy.ndimage: Gaussian filtering to smooth data.

Tropopause Detection Methods

The notebook implements several tropopause detection methods:

  1. Thermal (WMO) method: Cold-point/lapse-rate tropopause from ERA5 temperature profiles.
  2. Dynamic (2 PVU) method: 2-PVU surface as the dynamical tropopause.
  3. Stability-based method: Uses atmospheric static stability to locate tropopause.
  4. Hygropause-based method: Identifies tropopause using humidity/moisture profiles.
  5. Hybrid methods: Combines multiple criteria (stability + hygropause) for robust detection.

Each method calculates tropopause height across all ERA5 grid points and produces visualizations for single time steps and monthly means.


Internship Notebook

The main Jupyter notebook, tropopause-detection-mapping.ipynb, includes:

  • Data loading from ERA5 NetCDF files.
  • Tropopause calculation using all detection methods.
  • Visualization of global tropopause maps, vertical profiles, and method comparisons.
  • Notes on challenges, failures, and lessons learned during method development.
  • Output generation for both single snapshots and monthly mean analyses.

Setup and Usage

1. Install Python libraries

bash: pip install netCDF4 xarray numpy matplotlib cartopy metpy scipy

2. Download ERA5 Data

  • Pressure-level data: temperature, geopotential, humidity
  • Complete dataset: 2-PVU tropopause (optional for comparison)

See the Copernicus Climate Data Store (CDS) for instructions.


3. Prepare Data

Place the downloaded NetCDF files in the data/ directory and update paths in the notebook if necessary.


4. Run the Notebook

Open tropopause-detection-mapping.ipynb and execute all cells. The notebook will:

  • Load ERA5 data via netCDF4 and xarray.
  • Compute tropopause heights using all methods.
  • Generate global maps, vertical profiles, and comparison plots.
  • Optionally calculate monthly means for selected periods.

Comparison of Tropopause Detection Methods

These visualizations allow a side-by-side comparison of classical and new methods, highlighting differences and improvements from stability, hygropause, and hybrid approaches.


Vertical Profiles

  • Single-location tropopause detection along latitude or longitude.
  • Comparison of tropopause heights for different methods.

Results Confirmed

  • Classical and new methods produce consistent results in mid-latitudes.
  • Tropical tropopause is higher than polar tropopause across all methods.
  • Hybrid methods reduce local inconsistencies and smooth extreme values.
  • Monthly mean analyses provide long-term trend insights for selected periods.

References

ECMWF. (2024). Reintroducing analysis humidity in the stratosphere. Retrieved from https://www.ecmwf.int/en/newsletter/183/earth-system-science/reintroducing-analysis-humidity-stratosphere

ECMWF. (2024). IFS Documentation - Cy49r1, Part IV: Physical Processes. Operational implementation from 12 November 2024. Retrieved from https://www.ecmwf.int/sites/default/files/elibrary/112024/81626-ifs-documentation-cy49r1-part-iv-physical-processes.pdf

Elmer, N. J., Berndt, E., Jedlovec, G., & Fuell, K. (2019). Limb Correction of Geostationary Infrared Imagery in Clear and Cloudy Regions to Improve Interpretation of RGB Composites for Real-Time Applications. Journal of Atmospheric and Oceanic Technology, 36(8), 1675–1690. https://doi.org/10.1175/JTECH-D-18-0206.1

Hoskins, B. J., McIntyre, M. E., & Robertson, A. W. (1985). On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society, 111(470), 877–946. https://doi.org/10.1002/qj.49711147002

ECMWF. (2024). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Retrieved from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5

European Centre for Medium-Range Weather Forecasts (ECMWF). (2024). Official website. Retrieved from https://www.ecmwf.int

Santer, B. D., Wehner, M. F., Wigley, T. M. L., Sausen, R., Meehl, G. A., Taylor, K. E., ... & Branson, M. (2004). Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301(5632), 479–483. https://doi.org/10.1126/science.1084123

World Meteorological Organization (WMO). (1957). Definition of the tropopause. WMO Bulletin, 6(4), 136–137.

Hoinka, K. P. (1998). Statistics of the global tropopause pressure. Monthly Weather Review, 126(12), 3303–3325. https://doi.org/10.1175/1520-0493(1998)126<3303:SOTGTP>2.0.CO;2

ECMWF. (2023). Hybrid tropopause detection methods in the IFS. ECMWF Technical Memorandum No. 987.

Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861

Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (4th ed.). Pearson Education. Chapter 5: Image Restoration and Reconstruction.

Lewis, J. P. (1995). Fast normalized cross-correlation. Vision Interface, 10(1), 120–123.

Hore, A., & Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. In 2010 20th International Conference on Pattern Recognition (pp. 2366–2369). IEEE. https://doi.org/10.1109/ICPR.2010.579

Theodoridis, S., & Koutroumbas, K. (2008). Pattern Recognition (4th ed.). Academic Press. Chapter 7: Feature Generation II.

Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer Science & Business Media. Chapter 8: Dense Motion Estimation.

Oppenheim, A. V., & Schafer, R. W. (2009). Discrete-Time Signal Processing (3rd ed.). Pearson Education. Chapter 7: Filter Design Techniques.


Contact

For questions or help with this project, you can contact me at: mohamedabdioui0@gmail.com

Best regards,
Mohammed El Abdioui

About

Tropopause detection and mapping using ERA5 data with classical and new methods (stability, hygropause, hybrid).

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published