- Template directory for datascience competitions.
- Data is saved in PostgreSQL on Docker🐳 container and the data is reproducibule/reusable 😄🎉
git clone https://github.com/kiccho1101/kaggle-base.git
cd kaggle-baseRecommended:
make pullor
make buildmake jupyter- Copy token and acccess to localhost:${JUPYTER_PORT} (default: 9000)
make start-db- Then you can access to localhost:${PGWEB_PORT} (default: 9002) to view the database.
make kfold CONFIG_NAME(default: lightgbm_0)- Create all features.
make feature- Specify a feature that will be created.
make feature FEATURE_NAMEmake cv CONFIG_NAMEmake statsmake train-and-predict CONFIG_NAME- Then submit your output file!🙆
./output/submission_xxx.csvmake formatmake checkmake reset-dbRecommended:
make shell
python xxx.pyor
make run python xxx.pyまさに特徴量管理に疲弊していたときに見つけたスライド。すごくわかりやすいです。
クラスの書き方が参考になります。