Skip to content

RootPainter: Deep Learning Segmentation of Biological Images with Corrective Annotation

License

Notifications You must be signed in to change notification settings

sripar2000/root_painter

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RootPainter

Described in the paper "RootPainter: Deep Learning Segmentation of Biological Images with Corrective Annotation"

Published peer-reviewed paper available in the New Phytologist at: https://doi.org/10.1111/nph.18387

To see a list of work using (or citing) the RootPainter paper, please see the google scholar page

BioRxiv Pre-print available at: https://www.biorxiv.org/content/10.1101/2020.04.16.044461v2

RootPainter is a GUI-based software tool for the rapid training of deep neural networks for use in biological image analysis. RootPainter uses a client-server architecture, allowing users with a typical laptop to utilise a GPU on a more computationally powerful server.

Getting started quickly

I suggest the colab tutorial.

A video demonstrating how to train and use a model is also available to download

Client Downloads

See releases

If you are not confident with the linux administration then to get started quickly I suggest the colab tutorial.

Server setup

The following instructions are for a local server. If you do not have linux running a suitable NVIDIA GPU with at least 8GB of GPU memory then my current recommendation is to run via Google colab. A publicly available notebook is available at Google Drive with Google Colab.

Other options to run the server component of RootPainter on a remote machine include the the sshfs server setup tutorial. You can also use Dropbox instead of sshfs.

For the next steps I assume you have a suitable GPU and CUDA installed.

  1. To install the RootPainter trainer:
pip install root-painter-trainer
  1. To run the trainer. This will first create the sync directory.
start-trainer

You will be prompted to input a location for the sync directory. This is the folder where files are shared between the client and server. I will use ~/root_painter_sync. RootPainter will then create some folders inside ~/root_painter_sync. The server should print the automatically selected batch size, which should be greater than 0. It will then start watching for instructions from the client.

You should now be able to see the folders created by RootPainter (datasets, instructions and projects) inside ~/Desktop/root_painter_sync on your local machine See lung tutorial for an example of how to use RootPainter to train a model.

About

RootPainter: Deep Learning Segmentation of Biological Images with Corrective Annotation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.6%
  • Shell 1.2%
  • NSIS 1.2%