Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
201 changes: 201 additions & 0 deletions lib/node_modules/@stdlib/stats/incr/nanmcv/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# incrnanmcv

> Compute a moving [coefficient of variation][coefficient-of-variation] (CV) incrementally, ignoring `NaN` values.

<section class="intro">

For a window of size `W`, the [corrected sample standard deviation][standard-deviation] is defined as

<!-- <equation class="equation" label="eq:corrected_sample_standard_deviation" align="center" raw="s = \sqrt{\frac{1}{W-1} \sum_{i=0}^{W-1} ( x_i - \bar{x} )^2}" alt="Equation for the corrected sample standard deviation."> -->

```math
s = \sqrt{\frac{1}{W-1} \sum_{i=0}^{W-1} ( x_i - \bar{x} )^2}
```

<!-- <div class="equation" align="center" data-raw-text="s = \sqrt{\frac{1}{W-1} \sum_{i=0}^{W-1} ( x_i - \bar{x} )^2}" data-equation="eq:corrected_sample_standard_deviation">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@eed6b690d7c37249b04544b3f5fd36ad8eb3187f/lib/node_modules/@stdlib/stats/incr/nanmcv/docs/img/equation_corrected_sample_standard_deviation.svg" alt="Equation for the corrected sample standard deviation.">
<br>
</div> -->

<!-- </equation> -->

and the [arithmetic mean][arithmetic-mean] is defined as

<!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\bar{x} = \frac{1}{W} \sum_{i=0}^{W-1} x_i" alt="Equation for the arithmetic mean."> -->

```math
\bar{x} = \frac{1}{W} \sum_{i=0}^{W-1} x_i
```

<!-- <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{W} \sum_{i=0}^{W-1} x_i" data-equation="eq:arithmetic_mean">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@4cf17e4e25cc2244d5154bd5d251f4bd023748da/lib/node_modules/@stdlib/stats/incr/nanmcv/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean.">
<br>
</div> -->

<!-- </equation> -->

The [coefficient of variation][coefficient-of-variation] (also known as **relative standard deviation**, RSD) is defined as

<!-- <equation class="equation" label="eq:coefficient_of_variation" align="center" raw="c_v = \frac{s}{\bar{x}}" alt="Equation for the coefficient of variation (CV)."> -->

<div class="equation" align="center" data-raw-text="c_v = \frac{s}{\bar{x}}" data-equation="eq:coefficient_of_variation">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@eed6b690d7c37249b04544b3f5fd36ad8eb3187f/lib/node_modules/@stdlib/stats/incr/nanmcv/docs/img/equation_coefficient_of_variation.svg"Equation for the coefficient of variation (CV).">
<br>
</div>

<!-- </equation> -->

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var incrnanmcv = require( '@stdlib/stats/incr/nanmcv' );
```

#### incrnanmcv( window\[, mean] )

Returns an accumulator function which incrementally computes a moving [coefficient of variation][coefficient-of-variation].

```javascript
var accumulator = incrnanmcv( 3 );
```

The function supports the following parameters:

- **window**: defines the number of values over which to compute the moving [coefficient of variation][coefficient-of-variation].
- **mean**: known mean.

If the mean is already known, provide a `mean` argument.

```javascript
var accumulator = incrnanmcv( 3, 5.0 );
```

#### accumulator( \[x] )

If provided an input value `x`, the accumulator function returns an updated accumulated value. If not provided an input value `x`, the accumulator function returns the current accumulated value.

```javascript
var accumulator = incrnanmcv( 3 );

var cv = accumulator();
// returns null

// Fill the window...
cv = accumulator( 2.0 ); // [2.0]
// returns 0.0

cv = accumulator( NaN ); // [2.0]
// returns 0.0

cv = accumulator( 3.0 ); // [2.0, 3.0]
// returns ~0.28

cv = accumulator( 1.0 ); // [2.0, 3.0, 1.0]
// returns ~0.50

// Window begins sliding...
cv = accumulator( NaN ); // [2.0, 3.0, 1.0]
// returns ~0.50

cv = accumulator( 7.0 ); // [3.0, 1.0, 7.0]
// returns ~0.83

cv = accumulator( 5.0 ); // [1.0, 7.0, 5.0]
// returns ~0.71

cv = accumulator( NaN ); // [1.0, 7.0, 5.0]
// returns ~0.71

cv = accumulator();
// returns ~0.71
```

</section>

<!-- /.usage -->

<section class="notes">

## Notes

- Input values are not type checked. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
- As `W` values are needed to fill the window buffer, the first `W-1` returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.
- The [coefficient of variation][coefficient-of-variation] is typically computed on nonnegative values. The measure may lack meaning for data which can assume both positive and negative values.
- For small and moderately sized samples, the accumulated value tends to be too low and is thus a **biased** estimator. Provided the generating distribution is known (e.g., a normal distribution), you may want to adjust the accumulated value or use an alternative implementation providing an unbiased estimator.

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var randu = require( '@stdlib/random/base/randu' );
var incrnanmcv = require( '@stdlib/stats/incr/nanmcv' );

// Initialize an accumulator with window size 5:
var accumulator = incrnanmcv( 5 );

// For each simulated datum, update the moving coefficient of variation...
var i;
for ( i = 0; i < 100; i++ ) {
accumulator( ( randu() < 0.2 ) ? NaN : randu()*100.0 );
}
console.log( accumulator() );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[coefficient-of-variation]: https://en.wikipedia.org/wiki/Coefficient_of_variation

[arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean

[standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation

</section>

<!-- /.links -->
91 changes: 91 additions & 0 deletions lib/node_modules/@stdlib/stats/incr/nanmcv/benchmark/benchmark.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var isnan = require( '@stdlib/assert/is-nan' );
var pkg = require( './../package.json' ).name;
var incrnanmcv = require( './../lib' );


// MAIN //

bench( pkg, function benchmark( b ) {
var f;
var i;
b.tic();
for ( i = 0; i < b.iterations; i++ ) {
f = incrnanmcv( (i%5)+1 );
if ( typeof f !== 'function' ) {
b.fail( 'should return a function' );
}
}
b.toc();
if ( typeof f !== 'function' ) {
b.fail( 'should return a function' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::accumulator', function benchmark( b ) {
var acc;
var v;
var i;

acc = incrnanmcv( 5 );

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = acc( i+1 );
if ( isnan( v ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( isnan( v ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});

bench( pkg+'::accumulator,known_mean', function benchmark( b ) {
var acc;
var v;
var i;

acc = incrnanmcv( 5, 0.5 );

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
v = acc( i+1 );
if ( isnan( v ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( isnan( v ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
});
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading