Skip to content
/ ezesri Public

A Python package for extracting data and metadata from Esri REST API endpoints. It provides an API, CLI and web app for exporting feature layers, with support for pagination and filtering.

License

Notifications You must be signed in to change notification settings

stiles/ezesri

Repository files navigation

ezesri

Extract data from Esri REST API endpoints. Available as a web app, Python library and CLI.

Web app

Don't have Python installed? Use the web app at ezesri.com to extract GeoJSON directly in your browser. No installation required.

Public Data Directory

Browse 24,000+ public ArcGIS Feature Services from government agencies worldwide at ezesri.com/directory. Find parcels, zoning, elections, crime, weather, sports facilities, wildlife data and more — all searchable and filterable by 32 categories.

Python package

ezesri is also a lightweight Python package for extracting data and metadata from Esri REST API endpoints. It provides a modular API and optional CLI for exporting feature layers and metadata to common formats, with robust handling of Esri-specific pagination and filtering.

Why use the Python package?

Many tools exist for interacting with Esri services, but they often come with trade-offs:

  • pysridump/esridump: Simple and widely used, but not modular, lacks modern export formats, and is not actively maintained.
  • ArcGIS API for Python: A full-featured Esri SDK, but its heavy dependencies make it overkill for simple data extraction.
  • ogr2ogr (GDAL): Extremely powerful, but can be complex to use and is not a native Python library.

Key features

  • Multiple export formats: GeoJSON, Shapefile, GeoPackage, File Geodatabase, GeoParquet, Parquet, NDJSON
  • Automatic pagination: Handles Esri's record limits seamlessly
  • Filtering: Filter by bounding box, geometry, or SQL where clause
  • Bulk exports: Download all layers from a MapServer or FeatureServer
  • CLI: Command-line interface for quick extraction
  • Clean metadata: Human-readable layer summaries

Installation

pip install ezesri

Quickstart

Here's a simple example of how to use ezesri as a library to extract data and metadata.

import ezesri

# URL for Riverside County, CA parcels layer
url = "https://gis.countyofriverside.us/arcgis/rest/services/mmc/mmc_mSrvc_v12_prod/MapServer/8"

# Get layer metadata
metadata = ezesri.get_metadata(url)
print("## Layer Metadata Summary")
print(ezesri.summarize_metadata(metadata))

# Extract layer to a GeoDataFrame
print("\n## Extracting Layer to GeoDataFrame")
gdf = ezesri.extract_layer(url, where="APN LIKE '750%'")
print(f"Successfully extracted {len(gdf)} features.")
print(gdf.head())

Documentation

Full documentation is available at ezesri.com/docs

Usage

Python library

ezesri is designed to be used as a library for integration with your Python scripts.

  • get_metadata(url): Fetches the raw metadata for a layer.
  • summarize_metadata(metadata): Returns a human-readable summary of the metadata.
  • extract_layer(url, where, bbox, geometry, out_sr): Extracts a layer to a GeoDataFrame, with optional filters.
  • bulk_fetch(service_url, output_dir, file_format): Downloads all layers from a MapServer or FeatureServer.

Command-line interface (CLI)

ezesri also provides a command-line tool for quick data extraction.

Fetch metadata

Get a clean, human-readable summary of a layer's metadata.

ezesri metadata "https://gis.countyofriverside.us/arcgis/rest/services/mmc/mmc_mSrvc_v12_prod/MapServer/8"

To get the raw JSON output, use the --json flag:

ezesri metadata <YOUR_ESRI_LAYER_URL> --json

Fetch layer data

You can fetch a layer and save it to a file in various formats.

  • GeoJSON

    ezesri fetch <URL> --format geojson --out output.geojson
  • Shapefile

    ezesri fetch <URL> --format shapefile --out output.shp
  • GeoPackage

    ezesri fetch <URL> --format gpkg --out output.gpkg
  • File Geodatabase

    ezesri fetch <URL> --format gdb --out output.gdb
  • GeoParquet (spatial)

    ezesri fetch <URL> --format geoparquet --out output.parquet
  • Parquet (tabular)

    ezesri fetch <URL> --format parquet --out output.parquet
  • NDJSON (streaming)

    # to stdout
    ezesri fetch <URL> --format ndjson
    # to file
    ezesri fetch <URL> --format ndjson --out output.ndjson

You can also filter by a bounding box (in WGS84 coordinates) or an attribute query:

ezesri fetch <URL> --bbox <xmin,ymin,xmax,ymax> --out <FILE>
ezesri fetch <URL> --where "STATUS = 'ACTIVE'" --out <FILE>

Bulk-fetch all layers from a service

You can discover and export all layers from a MapServer or FeatureServer to a specified directory.

ezesri bulk-fetch <YOUR_ESRI_SERVICE_URL> <YOUR_OUTPUT_DIRECTORY> --format gdb

Or use GeoPackage as an open, broadly supported alternative:

ezesri bulk-fetch <YOUR_ESRI_SERVICE_URL> <YOUR_OUTPUT_DIRECTORY> --format gpkg

You can also write per-layer files in these formats:

ezesri bulk-fetch <YOUR_ESRI_SERVICE_URL> <YOUR_OUTPUT_DIRECTORY> --format geoparquet
ezesri bulk-fetch <YOUR_ESRI_SERVICE_URL> <YOUR_OUTPUT_DIRECTORY> --format parquet
ezesri bulk-fetch <YOUR_ESRI_SERVICE_URL> <YOUR_OUTPUT_DIRECTORY> --format ndjson

Speed and politeness options:

# use 4 parallel workers
ezesri bulk-fetch <SERVICE_URL> <OUT_DIR> --format geoparquet --workers 4
# apply a global rate limit of 2 requests/second across all workers
ezesri bulk-fetch <SERVICE_URL> <OUT_DIR> --format geoparquet --workers 4 --rate 2

Examples

For a detailed, real-world example of using ezesri to acquire, process, and visualize data, see the scripts in the examples/ directory. These examples demonstrate how to download data, merge it, and create a map.

To run these examples, you will first need to install the required dependencies:

pip install geopandas matplotlib

Then, you can run the scripts directly:

python examples/00_palm_springs_fetch.py
python examples/01_palm_springs_pools_map.py

Testing

This project uses pytest for unit testing. For details on how to run the test suite, please see the testing guide.

Deploying the Web App

The web app consists of two parts:

Frontend (Next.js on Vercel)

The frontend auto-deploys to Vercel on push to main. No manual steps required.

Backend (AWS Lambda)

The API backend requires manual deployment via AWS SAM:

cd web/lambda
sam build && sam deploy

Prerequisites:

  • AWS CLI configured with credentials
  • AWS SAM CLI installed (brew install aws-sam-cli on Mac)

See web/lambda/README.md for more details.

Contributing

Contributions are welcome! Please see the contributing guide for more information.

About

A Python package for extracting data and metadata from Esri REST API endpoints. It provides an API, CLI and web app for exporting feature layers, with support for pagination and filtering.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published