Unofficial Pytorch implementation of following papers for predicting Protein Subcellular Localization from quantitative label-free imaging with phase and polarization:
- Create Environment
conda create -n <environment_name> python=3.8
conda activate <enviroment_name>
pip install -r requirements.txt- Download dataset as mentioned in Data section
- Run inference on pretrained weights
python inference.py --config
python train_test.py --config
For Tensorboard:
tensorboard --logdir logs/
QLIPP can be downloaded from repo.
- The directory structure of the whole project is as follows:
.
βββ Network
βΒ Β βββdatasets
βΒ Β β Β Β βββ dataset_*.py
βΒ Β βββtrain.py
βΒ Β βββtest.py
βΒ Β βββ...
βββ model
βΒ Β βββ TU_Synapse128
βΒ Β βββ res_True_head_4_ch_512_nuclei
βΒ Β Β Β βββ UTransform-129.pth
βΒ Β Β Β βββ *.pth
βββ data
βββSynapse
βββ train
βΒ Β βββ im_c001_z011_t000_p005_r0-256_c0-256_sl0-3.npy
βΒ Β βββ *.npy
βββ train_label
βββ im_c000_z011_t000_p005_r0-256_c0-256_sl0-3.npy
βββ *.npy