Skip to content

predicting Protein Subcellular Localization from quantitative label-free imaging with phase and polarization

Notifications You must be signed in to change notification settings

stonedada/UTransformer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

U-Net Transformer

Unofficial Pytorch implementation of following papers for predicting Protein Subcellular Localization from quantitative label-free imaging with phase and polarization:

Quick Start

  1. Create Environment
conda create -n <environment_name> python=3.8
conda activate <enviroment_name>
pip install -r requirements.txt
  1. Download dataset as mentioned in Data section
  2. Run inference on pretrained weights
python inference.py --config 

Training

python train_test.py --config

For Tensorboard: tensorboard --logdir logs/

Data

QLIPP can be downloaded from repo.

  • The directory structure of the whole project is as follows:
.
β”œβ”€β”€ Network
β”‚Β Β  β”œβ”€β”€datasets
β”‚Β Β  β”‚    Β Β  └── dataset_*.py
β”‚Β Β  β”œβ”€β”€train.py
β”‚Β Β  β”œβ”€β”€test.py
β”‚Β Β  └──...
β”œβ”€β”€ model
β”‚Β Β  └── TU_Synapse128
β”‚Β Β      └── res_True_head_4_ch_512_nuclei
β”‚Β Β       Β Β  β”œβ”€β”€ UTransform-129.pth
β”‚Β Β       Β Β  └── *.pth
└── data
    └──Synapse
        β”œβ”€β”€ train
        β”‚Β Β  β”œβ”€β”€ im_c001_z011_t000_p005_r0-256_c0-256_sl0-3.npy
        β”‚Β Β  └── *.npy
        └── train_label
            β”œβ”€β”€ im_c000_z011_t000_p005_r0-256_c0-256_sl0-3.npy
            └── *.npy

References

About

predicting Protein Subcellular Localization from quantitative label-free imaging with phase and polarization

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages