Skip to content

thepartly/automodel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

137 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AutoModel Workspace

A Rust workspace for automatically generating typed functions from SQL queries using PostgreSQL. Queries are defined in SQL files with embedded configuration in comments.

Project Structure

This is a Cargo workspace with three main components:

  • automodel-lib/ - The core library for generating typed functions from SQL queries
  • automodel-cli/ - Command-line interface with advanced features
  • example-app/ - An example application that demonstrates build-time code generation

Features

  • 📝 Define SQL queries in .sql files with embedded configuration in comments
  • 🔌 Connect to PostgreSQL databases
  • 🔍 Automatically extract input and output types from prepared statements
  • 🛠️ Generate Rust functions with proper type signatures at build time
  • âś… Support for all common PostgreSQL types including custom enums
  • 🏗️ Generate result structs for multi-column queries
  • ⚡ Build-time code generation with automatic regeneration when SQL files change
  • 📊 Built-in query performance analysis with sequential scan detection
  • 🔄 Conditional queries with dynamic SQL based on optional parameters
  • ♻️ Struct reuse and deduplication across queries
  • 🔀 Diff-based conditional updates for precise change tracking
  • 🎨 Custom struct naming for cleaner, domain-specific APIs
  • đź’ˇ SQL syntax highlighting and editor support for query definitions

Quick Start

1. Clone and Build

git clone <repository-url>
cd automodel
cargo build

2. CLI Usage

The CLI tool provides several commands for different workflows:

Generate code

# Basic generation from queries directory
cargo run -p automodel-cli -- generate -d postgresql://localhost/mydb -q queries/

# Generate with custom output file
cargo run -p automodel-cli -- generate -d postgresql://localhost/mydb -q queries/ -o src/db_functions.rs

# Dry run (see generated code without writing files)
cargo run -p automodel-cli -- generate -d postgresql://localhost/mydb -q queries/ --dry-run

Query Performance Analysis

# Analysis is performed automatically during code generation (if analysis is enabled in query metadata)
cargo run -p automodel-cli -- generate -d postgresql://localhost/mydb -q queries/

CLI Help

# General help
cargo run -p automodel-cli -- --help

# Subcommand help
cargo run -p automodel-cli -- generate --help

3. Run the Example App

cd example-app
cargo run

The example app demonstrates:

  • Build-time code generation via build.rs
  • Automatic regeneration when SQL files change
  • How to use generated functions in your application
  • SQL files with embedded metadata configuration

Library Usage (automodel-lib)

Add to your Cargo.toml

[dependencies]
automodel-lib = { path = "../automodel-lib" }  # or from crates.io when published

[build-dependencies]  
automodel-lib = { path = "../automodel-lib" }
tokio = { version = "1.0", features = ["rt"] }
anyhow = "1.0"

Create a build.rs for automatic code generation

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let defaults = automodel::DefaultsConfig {
        telemetry: automodel::DefaultsTelemetryConfig {
            level: automodel::TelemetryLevel::Debug,
            include_sql: true,
        },
        ensure_indexes: true,
    };
    automodel::AutoModel::generate(
        || {
            if std::env::var("CI").is_err() {
                std::env::var("AUTOMODEL_DATABASE_URL").map_err(|_| {
                    "AUTOMODEL_DATABASE_URL environment variable must be set for code generation"
                        .to_string()
                })
            } else {
                Err(
                    "Detecting not up to date AutoModel generated code in CI environment"
                        .to_string(),
                )
            }
        },
        "queries",
        "src/generated",
        defaults,
    )
    .await
}

Define Queries in SQL Files

Organize your queries as separate SQL files with embedded configuration in comments. This approach provides SQL syntax highlighting and better editor support.

Directory Structure:

Create a queries/ directory in your project:

my-project/
├── queries/              # SQL files organized by module
│   └── users/
│       ├── get_user_by_id.sql
│       ├── create_user.sql
│       └── update_user_profile.sql
├── build.rs
└── src/
    └── main.rs

SQL File Format:

Each SQL file contains configuration metadata in SQL comments followed by the query:

-- @automodel
--    description: Retrieve a user by their ID
--    expect: exactly_one
-- @end

SELECT id, name, email, created_at
FROM users
WHERE id = #{id}

Advanced Example with Custom Types:

-- @automodel
--    description: Update user profile with conditional name/email
--    expect: exactly_one
--    conditions_type: true
--    types:
--      profile: "crate::models::UserProfile"
-- @end

UPDATE users 
SET profile = #{profile}, updated_at = NOW() 
#[, name = #{name?}] 
#[, email = #{email?}] 
WHERE id = #{user_id} 
RETURNING id, name, email, profile, updated_at

File Naming Convention:

  • File path: queries/{module_name}/{function_name}.sql
  • Module name: The directory name (e.g., users)
  • Function name: The file name without extension (e.g., update_user_profile_diff)

Both module and function names must be valid Rust identifiers.

Metadata Format:

All metadata is optional and specified in YAML format within SQL comments:

-- @automodel
--    description: Optional query description
--    expect: exactly_one | possible_one | at_least_one | multiple
--    module: custom_module  # Overrides directory-based module name
--    types:
--      field_name: "CustomType"
--    telemetry:
--      level: debug
--      include_params: [param1, param2]
--    conditions_type: true | "CustomStructName"
--    parameters_type: true | "CustomStructName"
--    return_type: "CustomReturnType"
--    error_type: "CustomErrorType"
--    ensure_indexes: true
--    multiunzip: true
-- @end

SELECT * FROM table WHERE id = #{id}

Benefits:

  • âś… SQL syntax highlighting in your editor
  • âś… Better code organization for large projects
  • âś… Easy to version control individual queries
  • âś… Configuration embedded directly with the SQL
  • âś… Automatic build regeneration when SQL files change
  • âś… Module organization based on directory structure

Use the generated functions

mod generated;

use tokio_postgres::Client;

async fn example(client: &Client) -> Result<(), tokio_postgres::Error> {
    // The functions are generated at build time with proper types!
    let user = generated::get_user_by_id(client, 1).await?;
    let new_id = generated::create_user(client, "John".to_string(), "john@example.com".to_string()).await?;
    Ok(())
}

Configuration Options

AutoModel uses SQL files with embedded metadata to define queries and their configuration. Here's a comprehensive guide to all configuration options:

SQL File Structure

Each .sql file in the queries/{module}/ directory contains:

  1. Optional metadata block (in YAML format within SQL comments)
  2. The SQL query
-- @automodel
--    description: Query description
--    expect: exactly_one
--    # ... other configuration options
-- @end

SELECT * FROM users WHERE id = #{id}

Default Configuration

Defaults are configured in build.rs when calling AutoModel::generate():

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    let defaults = automodel::DefaultsConfig {
        telemetry: automodel::DefaultsTelemetryConfig {
            level: automodel::TelemetryLevel::Debug,
            include_sql: true,
        },
        ensure_indexes: true,
    };
    automodel::AutoModel::generate(
        || {
            if std::env::var("CI").is_err() {
                std::env::var("AUTOMODEL_DATABASE_URL").map_err(|_| {
                    "AUTOMODEL_DATABASE_URL environment variable must be set for code generation"
                        .to_string()
                })
            } else {
                Err(
                    "Detecting not up to date AutoModel generated code in CI environment"
                        .to_string(),
                )
            }
        },
        "queries",
        "src/generated",
        defaults,
    )
    .await
}

Telemetry Levels:

  • none - No instrumentation
  • info - Basic span creation with function name
  • debug - Include SQL query in span (if include_sql is true)
  • trace - Include both SQL query and parameters in span

Query Analysis Features:

  • Sequential scan detection: Automatically detects queries that perform full table scans
  • Warnings during build: Identifies queries that might benefit from indexing

Query Configuration

Each query is defined in its own .sql file: queries/{module}/{query_name}.sql

The metadata block supports these options:

Minimal Example

-- @automodel
-- @end

SELECT id, name FROM users WHERE id = #{id}

If no metadata is provided, sensible defaults are used.

All Available Options

-- @automodel
--    description: Retrieve a user by their ID  # Function documentation
--    module: custom_module    # Override directory-based module name
--    expect: exactly_one       # exactly_one | possible_one | at_least_one | multiple
--    types:                    # Custom type mappings
--      profile: "crate::models::UserProfile"
--    telemetry:                # Per-query telemetry settings
--      level: trace
--      include_params: [id, name]
--      include_sql: false
--    ensure_indexes: true      # Enable performance analysis
--    multiunzip: false         # Enable for UNNEST-based batch inserts
--    conditions_type: false    # Use old/new struct for conditional queries
--    parameters_type: false    # Group all parameters into one struct
--    return_type: "UserInfo"   # Custom return type name
--    error_type: "UserError"   # Custom error type name
--    conditions_type_derives:  # Additional derives for conditions struct
--      - serde::Serialize
--    parameters_type_derives:  # Additional derives for parameters struct
--      - serde::Deserialize
--    return_type_derives:      # Additional derives for return struct
--      - serde::Serialize
--      - PartialEq
--    error_type_derives:       # Additional derives for error enum
--      - serde::Serialize
-- @end

SELECT id, name FROM users WHERE id = #{id}

Expected Result Types

Controls how the query is executed and what it returns:

expect: "exactly_one"    # fetch_one() -> Result<T, Error> - Fails if 0 or >1 rows
expect: "possible_one"   # fetch_optional() -> Result<Option<T>, Error> - 0 or 1 row
expect: "at_least_one"   # fetch_all() -> Result<Vec<T>, Error> - Fails if 0 rows
expect: "multiple"       # fetch_all() -> Result<Vec<T>, Error> - 0 or more rows (default for collections)

Custom Type Mappings

Override PostgreSQL-to-Rust type mappings for specific fields:

types:
  # For input parameters and output fields with this name
  "profile": "crate::models::UserProfile"
  
  # For output fields from specific table (when using JOINs)
  "users.profile": "crate::models::UserProfile"
  "posts.metadata": "crate::models::PostMetadata"
  
  # Custom enum types
  "status": "UserStatus"
  "category": "crate::enums::Category"

Note: Custom types must implement appropriate serialization traits:

  • Input parameters: serde::Serialize (for JSON serialization)
  • Output fields: serde::Deserialize (for JSON deserialization)

Named Parameters

Use #{parameter_name} syntax in SQL queries:

sql: "SELECT * FROM users WHERE id = #{user_id} AND status = #{status}"

Optional Parameters: Add ? suffix for optional parameters that become Option<T>:

sql: "SELECT * FROM posts WHERE user_id = #{user_id} AND (#{category?} IS NULL OR category = #{category?})"

Per-Query Telemetry Configuration

Override global telemetry settings for specific queries in the metadata block:

-- @automodel
--    telemetry:
--      level: trace              # none | info | debug | trace
--      include_params: [user_id, email]  # Only these parameters logged
--      include_sql: true         # Include SQL in spans
-- @end

SELECT * FROM users WHERE id = #{user_id}

Per-Query Analysis Configuration

Override global analysis settings for specific queries:

-- @automodel
--    ensure_indexes: true   # Enable/disable analysis for this query
-- @end

SELECT * FROM users WHERE email = #{email}

Module Organization

Generated functions are organized into modules based on directory structure:

queries/
├── users/              # Generated as src/generated/users.rs
│   ├── get_user.sql
│   └── create_user.sql
├── posts/              # Generated as src/generated/posts.rs
│   └── get_post.sql
└── admin/              # Generated as src/generated/admin.rs
    └── health_check.sql

You can override the module name in the metadata:

-- @automodel
--    module: custom_module  # Override directory-based module name
-- @end

Complete Examples

Simple query with custom type:

queries/users/get_user_profile.sql:

-- @automodel
--    description: Get user profile with custom JSON type
--    expect: possible_one
--    types:
--      profile: "crate::models::UserProfile"
--    telemetry:
--      level: trace
--      include_params: [user_id]
--      include_sql: true
--    ensure_indexes: true
-- @end

SELECT id, name, profile 
FROM users 
WHERE id = #{user_id}

Query with optional parameter:

queries/posts/search_posts.sql:

-- @automodel
--    description: Search posts with optional category filter
--    expect: multiple
--    types:
--      category: "PostCategory"
--      metadata: "crate::models::PostMetadata"
--    ensure_indexes: true
-- @end

SELECT * FROM posts 
WHERE user_id = #{user_id} 
  AND (#{category?} IS NULL OR category = #{category?})

DDL query without analysis:

queries/setup/create_sessions_table.sql:

-- @automodel
--    description: Create sessions table
--    ensure_indexes: false
-- @end

CREATE TABLE IF NOT EXISTS sessions (
  id UUID PRIMARY KEY, 
  created_at TIMESTAMPTZ DEFAULT NOW()
)

Bulk operation with minimal telemetry:

queries/admin/cleanup_old_sessions.sql:

-- @automodel
--    description: Remove sessions older than cutoff date
--    expect: exactly_one
--    telemetry:
--      include_params: []  # Skip all parameters for privacy
--      include_sql: false
-- @end

DELETE FROM sessions 
WHERE created_at < #{cutoff_date}

Conditional Queries

AutoModel supports conditional queries that dynamically include or exclude SQL clauses based on parameter availability. This allows you to write flexible queries that adapt based on which optional parameters are provided.

Conditional Syntax

Use the #[...] syntax to wrap optional SQL parts:

queries/users/search_users.sql:

-- @automodel
--    description: Search users with optional name and age filters
-- @end

SELECT id, name, email 
FROM users 
WHERE 1=1 
  #[AND name ILIKE #{name_pattern?}] 
  #[AND age >= #{min_age?}] 
ORDER BY created_at DESC

Key Components:

  • #[AND name ILIKE #{name_pattern?}] - Conditional block that includes the clause only if name_pattern is Some
  • #{name_pattern?} - Optional parameter (note the ? suffix)
  • The conditional block is removed entirely if the parameter is None

Runtime SQL Examples

The same function generates different SQL based on parameter availability:

// Both parameters provided
search_users(executor, Some("%john%".to_string()), Some(25)).await?;
// SQL: "SELECT id, name, email FROM users WHERE 1=1 AND name ILIKE $1 AND age >= $2 ORDER BY created_at DESC"
// Params: ["%john%", 25]

// Only name pattern provided  
search_users(executor, Some("%john%".to_string()), None).await?;
// SQL: "SELECT id, name, email FROM users WHERE 1=1 AND name ILIKE $1 ORDER BY created_at DESC"
// Params: ["%john%"]

// Only age provided
search_users(executor, None, Some(25)).await?;
// SQL: "SELECT id, name, email FROM users WHERE 1=1 AND age >= $1 ORDER BY created_at DESC"  
// Params: [25]

// No optional parameters
search_users(executor, None, None).await?;
// SQL: "SELECT id, name, email FROM users WHERE 1=1 ORDER BY created_at DESC"
// Params: []

Complex Conditional Queries

You can mix conditional and non-conditional parameters:

queries/users/find_users_complex.sql:

-- @automodel
--    description: Complex search with required name pattern and optional filters
-- @end

SELECT id, name, email, age 
FROM users 
WHERE name ILIKE #{name_pattern} 
  #[AND age >= #{min_age?}] 
  AND email IS NOT NULL 
  #[AND created_at >= #{since?}] 
ORDER BY name

This generates a function with signature:

pub async fn find_users_complex(
    executor: impl sqlx::Executor<'_, Database = sqlx::Postgres>,
    name_pattern: String,        // Required parameter
    min_age: Option<i32>,        // Optional parameter
    since: Option<chrono::DateTime<chrono::Utc>>  // Optional parameter
) -> Result<Vec<FindUsersComplexItem>, super::ErrorReadOnly>

Best Practices

  1. Use WHERE 1=1 as a base condition when all WHERE clauses are conditional:
    sql: "SELECT * FROM users WHERE 1=1 #[AND name = #{name?}] #[AND age > #{min_age?}]"

Conditional UPDATE Statements

Conditional syntax is also useful for UPDATE statements where you want to update only certain fields based on which parameters are provided:

- name: update_user_fields
  sql: "UPDATE users SET updated_at = NOW() #[, name = #{name?}] #[, email = #{email?}] #[, age = #{age?}] WHERE id = #{user_id} RETURNING id, name, email, age, updated_at"
  description: "Update user fields conditionally - only updates fields that are provided (not None)"
  module: "users"
  expect: "exactly_one"

This generates a function that allows partial updates:

// Update only the name
update_user_fields(executor, user_id, Some("Jane Doe".to_string()), None, None).await?;
// SQL: "UPDATE users SET updated_at = NOW(), name = $1 WHERE id = $2 RETURNING ..."

// Update only the age  
update_user_fields(executor, user_id, None, None, Some(35)).await?;
// SQL: "UPDATE users SET updated_at = NOW(), age = $1 WHERE id = $2 RETURNING ..."

// Update multiple fields
update_user_fields(executor, user_id, Some("Jane".to_string()), Some("jane@example.com".to_string()), None).await?;
// SQL: "UPDATE users SET updated_at = NOW(), name = $1, email = $2 WHERE id = $3 RETURNING ..."

// Update all fields
update_user_fields(executor, user_id, Some("Janet".to_string()), Some("janet@example.com".to_string()), Some(40)).await?;
// SQL: "UPDATE users SET updated_at = NOW(), name = $1, email = $2, age = $3 WHERE id = $4 RETURNING ..."

Note: Always include at least one non-conditional SET clause (like updated_at = NOW()) to ensure the UPDATE statement is syntactically valid even when all optional parameters are None.

Struct Configuration and Reuse

AutoModel provides four powerful configuration options that allow you to customize how structs and error types are generated and reused across queries: parameters_type, conditions_type, return_type, and error_type. These options enable you to eliminate code duplication, improve type safety, and create cleaner APIs.

Overview

Option Purpose Default Accepts Generates
parameters_type Group query parameters into a struct false true or struct name {QueryName}Params struct
conditions_type Diff-based conditional parameters false true or struct name {QueryName}Params struct with old/new comparison
return_type Custom name for return type struct auto struct name or omit Custom named or {QueryName}Item struct
error_type Custom name for error constraint enum (mutations only) auto error type name or omit Custom named or {QueryName}Constraints enum

Any structure or error type generated can be referenced by other queries. AutoModel validates at build time that the types are compatible and constraints match exactly.

parameters_type: Structured Parameters

Group all query parameters into a single struct instead of passing them individually. Makes function calls cleaner and enables parameter reuse.

Basic Usage:

- name: insert_user_structured
  sql: "INSERT INTO users (name, email, age) VALUES (#{name}, #{email}, #{age}) RETURNING id"
  parameters_type: true  # Generates InsertUserStructuredParams

Generated Code:

#[derive(Debug, Clone)]
pub struct InsertUserStructuredParams {
    pub name: String,
    pub email: String,
    pub age: i32,
}

pub async fn insert_user_structured(
    executor: impl sqlx::Executor<'_, Database = sqlx::Postgres>,
    params: &InsertUserStructuredParams
) -> Result<i32, super::Error<InsertUserStructuredConstraints>>

Usage:

let params = InsertUserStructuredParams {
    name: "Alice".to_string(),
    email: "alice@example.com".to_string(),
    age: 30,
};
insert_user_structured(executor, &params).await?;

Struct Reuse:

Specify an existing struct name to reuse it across queries:

queries:
  # First query generates the struct
  - name: get_user_by_id_and_email
    sql: "SELECT id, name, email FROM users WHERE id = #{id} AND email = #{email}"
    parameters_type: true  # Generates GetUserByIdAndEmailParams
  
  # Second query reuses the same struct
  - name: delete_user_by_id_and_email
    sql: "DELETE FROM users WHERE id = #{id} AND email = #{email} RETURNING id"
    parameters_type: "GetUserByIdAndEmailParams"  # Reuses existing struct

Only one struct definition is generated, shared by both functions.

conditions_type: Diff-Based Conditional Parameters

For queries with conditional SQL (#[...] blocks), generate a struct and compare old vs new values to decide which clauses to include. Works with any query type (SELECT, UPDATE, DELETE, etc.).

Basic Usage:

- name: update_user_fields_diff
  sql: "UPDATE users SET updated_at = NOW() #[, name = #{name?}] #[, email = #{email?}] WHERE id = #{user_id}"
  conditions_type: true  # Generates UpdateUserFieldsDiffParams

Generated Code:

pub struct UpdateUserFieldsDiffParams {
    pub name: String,
    pub email: String,
}

pub async fn update_user_fields_diff(
    executor: impl sqlx::Executor<'_, Database = sqlx::Postgres>,
    old: &UpdateUserFieldsDiffParams,
    new: &UpdateUserFieldsDiffParams,
    user_id: i32
) -> Result<(), super::Error<UpdateUserFieldsDiffConstraints>>

Usage:

let old = UpdateUserFieldsDiffParams {
    name: "Alice".to_string(),
    email: "alice@example.com".to_string(),
};
let new = UpdateUserFieldsDiffParams {
    name: "Alicia".to_string(),  // Changed
    email: "alice@example.com".to_string(),  // Same
};
update_user_fields_diff(executor, &old, &new, 42).await?;
// Only executes: UPDATE users SET updated_at = NOW(), name = $1 WHERE id = $2

How It Works:

  • The struct contains only conditional parameters (those ending with ?)
  • Non-conditional parameters remain as individual function parameters
  • At runtime, the function compares old.field != new.field
  • Only clauses where the field differs are included in the query

Struct Reuse:

queries:
  - name: update_user_profile_diff
    sql: "UPDATE users SET updated_at = NOW() #[, name = #{name?}] #[, email = #{email?}] WHERE id = #{user_id}"
    conditions_type: true
  
  - name: update_user_metadata_diff
    sql: "UPDATE users SET updated_at = NOW() #[, name = #{name?}] #[, email = #{email?}] WHERE id = #{user_id}"
    conditions_type: "UpdateUserProfileDiffParams"  # Reuses existing diff struct

return_type: Custom Return Type Names

Customize the name of return type structs (generated for multi-column SELECT queries) and enable struct reuse across queries.

Basic Usage:

- name: get_user_summary
  sql: "SELECT id, name, email FROM users WHERE id = #{user_id}"
  return_type: "UserSummary"  # Custom name instead of GetUserSummaryItem

Generated Code:

#[derive(Debug, Clone)]
pub struct UserSummary {
    pub id: i32,
    pub name: String,
    pub email: String,
}

pub async fn get_user_summary(
    executor: impl sqlx::Executor<'_, Database = sqlx::Postgres>,
    user_id: i32
) -> Result<UserSummary, super::ErrorReadOnly>

Struct Reuse:

Multiple queries returning the same columns can share the same struct:

queries:
  - name: get_user_summary
    sql: "SELECT id, name, email FROM users WHERE id = #{user_id}"
    return_type: "UserSummary"  # Generates the struct
  
  - name: get_user_info_by_email
    sql: "SELECT id, name, email FROM users WHERE email = #{email}"
    return_type: "UserSummary"  # Reuses the struct
  
  - name: get_all_user_summaries
    sql: "SELECT id, name, email FROM users ORDER BY name"
    return_type: "UserSummary"  # Reuses the struct

Only one UserSummary struct is generated, shared by all three functions.

Disable Custom Struct:

Set to false to use the default {QueryName}Item naming:

- name: get_user_count
  sql: "SELECT COUNT(*) as count FROM users"
  return_type: false  # Uses GetUserCountItem

Cross-Struct Reuse

You can reuse struct names across queries. AutoModel will:

  1. Auto-generate if the struct doesn't exist yet (from the first query that uses it)
  2. Reuse if the struct already exists (from a previous query in the same module)
  3. Validate that fields match exactly when reusing
queries:
  # First use: generates UserInfo struct from return columns
  - name: get_user_info
    sql: "SELECT id, name, email FROM users WHERE id = #{user_id}"
    return_type: "UserInfo"
  
  # Second use: reuses existing UserInfo struct for parameters
  - name: update_user_info
    sql: "UPDATE users SET name = #{name}, email = #{email} WHERE id = #{id}"
    parameters_type: "UserInfo"  # Reuses the return type struct

Usage:

// Get user info
let user = get_user_info(executor, 42).await?;

// Modify and update using the same struct
let updated = UserInfo {
    name: "New Name".to_string(),
    ..user
};
update_user_info(executor, &updated).await?;

Custom Derive Traits

Add additional derive traits to generated structs and enums using *_derives options:

-- @automodel
--    return_type: "UserId"
--    return_type_derives:
--      - serde::Serialize
--      - serde::Deserialize
--      - PartialEq
--      - Eq
-- @end

SELECT id FROM users WHERE email = #{email}

Generates:

#[derive(Debug, Clone, serde::Serialize, serde::Deserialize, PartialEq, Eq)]
pub struct UserId {
    pub id: i32,
}

Available Options:

  • conditions_type_derives - For conditions struct (used with conditions_type)
  • parameters_type_derives - For parameters struct (used with parameters_type)
  • return_type_derives - For return type struct
  • error_type_derives - For constraint error enum

Default derives (Debug, Clone, etc.) are always included. Empty list means no additional derives.

Build-Time Validation

AutoModel validates struct field compatibility at build time:

  1. Auto-Generation: If a named struct doesn't exist, AutoModel automatically generates it from the query
  2. Field Matching: When reusing an existing struct, query parameters/columns must exactly match struct fields (names and types)
  3. Clear Error Messages: Validation failures provide helpful guidance

Example validation errors:

Error: Query parameter 'age' not found in struct 'UserInfo'.
Available fields: id, name, email
Error: Type mismatch for parameter 'id' in struct 'UserInfo':
expected 'i64', but query requires 'i32'

Struct Definition Sources

Structs can be generated from three sources:

  1. parameters_type: true → {QueryName}Params (input parameters)
  2. conditions_type: true → {QueryName}Params (conditional input parameters)
  3. return_type: "Name" → Custom named struct (output columns)
  4. Multi-column SELECT → {QueryName}Item (output columns, when return_type not specified)

When to Use Each Option

Use parameters_type:

  • Queries with 3+ parameters where individual params become unwieldy
  • Building query parameters from existing structs or API input
  • Reusing parameter sets with slight modifications
  • Improving code organization and reducing function signature complexity

Use conditions_type:

  • Conditional queries (#[...]) with state comparison logic
  • UPDATE queries that should only modify changed fields
  • SELECT queries with filters that should only apply when criteria changed
  • Implementing PATCH-style REST endpoints
  • Avoiding the verbosity of many Option<T> parameters

Use return_type:

  • Multiple queries returning the same column structure
  • Creating domain-specific struct names (e.g., UserSummary instead of GetUserItem)
  • Reusing return types as input parameters for related queries
  • Building consistent DTOs across your API

Complete Example

queries:
  # Define a common return type
  - name: get_user_summary
    sql: "SELECT id, name, email FROM users WHERE id = #{user_id}"
    return_type: "UserSummary"
  
  # Reuse it in other queries
  - name: search_users
    sql: "SELECT id, name, email FROM users WHERE name ILIKE #{pattern}"
    return_type: "UserSummary"
  
  # Use it as input parameters
  - name: update_user_contact
    sql: "UPDATE users SET name = #{name}, email = #{email} WHERE id = #{id}"
    parameters_type: "UserSummary"
  
  # Conditional update with custom struct
  - name: partial_update_user
    sql: "UPDATE users SET updated_at = NOW() #[, name = #{name?}] #[, email = #{email?}] WHERE id = #{user_id}"
    conditions_type: true  # Generates PartialUpdateUserParams

Generated Code:

// Single struct definition shared across queries
#[derive(Debug, Clone)]
pub struct UserSummary {
    pub id: i32,
    pub name: String,
    pub email: String,
}

#[derive(Debug, Clone)]
pub struct PartialUpdateUserParams {
    pub name: String,
    pub email: String,
}

pub async fn get_user_summary(...) -> Result<UserSummary, super::ErrorReadOnly>
pub async fn search_users(...) -> Result<Vec<UserSummary>, super::ErrorReadOnly>
pub async fn update_user_contact(..., params: &UserSummary) -> Result<(), super::Error<UpdateUserContactConstraints>>
pub async fn partial_update_user(..., old: &PartialUpdateUserParams, new: &PartialUpdateUserParams, ...) -> Result<(), super::Error<PartialUpdateUserConstraints>>

Notes

  • Auto-generation of named structs: If a struct name is specified but doesn't exist yet, AutoModel generates it automatically
  • Struct reuse from previous queries: You can reference structs generated by earlier queries in the same module
  • Exact field matching: When reusing existing structs, all query parameters/columns must match struct fields exactly
  • No subset matching: You cannot use a struct with extra fields; all fields must match
  • parameters_type ignored when conditions_type is enabled: Diff-based queries already use structured parameters

Batch Insert with UNNEST Pattern

AutoModel supports efficient batch inserts using PostgreSQL's UNNEST function, which allows you to insert multiple rows in a single query. This is much more efficient than inserting rows one at a time.

Basic UNNEST Pattern

PostgreSQL's UNNEST function can expand multiple arrays into a set of rows:

INSERT INTO users (name, email, age)
SELECT * FROM UNNEST(
  ARRAY['Alice', 'Bob', 'Charlie'],
  ARRAY['alice@example.com', 'bob@example.com', 'charlie@example.com'],
  ARRAY[25, 30, 35]
)
RETURNING id, name, email, age, created_at;

Using UNNEST with AutoModel

Define a batch insert query in a SQL file:

queries/users/insert_users_batch.sql:

-- @automodel
--    description: Insert multiple users using UNNEST pattern
--    expect: multiple
--    multiunzip: true
-- @end

INSERT INTO users (name, email, age)
SELECT * FROM UNNEST(#{name}::text[], #{email}::text[], #{age}::int4[])
RETURNING id, name, email, age, created_at

Key Points:

  • Use array parameters: #{name}::text[], #{email}::text[], etc.
  • Include explicit type casts for proper type inference
  • Set expect: "multiple" to return a vector of results
  • Set multiunzip: true to enable the special batch insert mode

The multiunzip Configuration Parameter

When multiunzip: true is set, AutoModel generates special code to handle batch inserts more ergonomically:

Without multiunzip (standard array parameters):

// You would need to pass separate arrays for each column
insert_users_batch(
    &client,
    vec!["Alice".to_string(), "Bob".to_string()],
    vec!["alice@example.com".to_string(), "bob@example.com".to_string()],
    vec![25, 30]
).await?;

With multiunzip: true (generates a record struct):

// AutoModel generates an InsertUsersBatchRecord struct
#[derive(Debug, Clone)]
pub struct InsertUsersBatchRecord {
    pub name: String,
    pub email: String,
    pub age: i32,
}

// Now you can pass a single vector of records
insert_users_batch(
    &client,
    vec![
        InsertUsersBatchRecord {
            name: "Alice".to_string(),
            email: "alice@example.com".to_string(),
            age: 25,
        },
        InsertUsersBatchRecord {
            name: "Bob".to_string(),
            email: "bob@example.com".to_string(),
            age: 30,
        },
    ]
).await?;

How multiunzip Works

When multiunzip: true is enabled:

  1. Generates an input record struct with fields matching your parameters
  2. Uses itertools::multiunzip() to transform Vec<Record> into tuple of arrays (Vec<name>, Vec<email>, Vec<age>)
  3. Binds each array to the corresponding SQL parameter

Generated function signature:

pub async fn insert_users_batch(
    executor: impl sqlx::Executor<'_, Database = sqlx::Postgres>,
    items: Vec<InsertUsersBatchRecord>  // Single parameter instead of multiple arrays
) -> Result<Vec<InsertUsersBatchItem>, super::Error<InsertUsersBatchConstraints>>

Internal implementation:

use itertools::Itertools;

// Transform Vec<Record> into separate arrays
let (name, email, age): (Vec<_>, Vec<_>, Vec<_>) =
    items
        .into_iter()
        .map(|item| (item.name, item.email, item.age))
        .multiunzip();

// Bind each array to the query
let query = query.bind(name);
let query = query.bind(email);
let query = query.bind(age);

Complete Example

queries/posts/insert_posts_batch.sql:

-- @automodel
--    description: Batch insert multiple posts
--    expect: multiple
--    multiunzip: true
-- @end

INSERT INTO posts (title, content, author_id, published_at)
SELECT * FROM UNNEST(
  #{title}::text[],
  #{content}::text[],
  #{author_id}::int4[],
  #{published_at}::timestamptz[]
)
RETURNING id, title, author_id, created_at

Usage:

use crate::generated::posts::{insert_posts_batch, InsertPostsBatchRecord};

let posts = vec![
    InsertPostsBatchRecord {
        title: "First Post".to_string(),
        content: "Content 1".to_string(),
        author_id: 1,
        published_at: chrono::Utc::now(),
    },
    InsertPostsBatchRecord {
        title: "Second Post".to_string(),
        content: "Content 2".to_string(),
        author_id: 1,
        published_at: chrono::Utc::now(),
    },
];

let inserted = insert_posts_batch(&client, posts).await?;
println!("Inserted {} posts", inserted.len());

Upsert Pattern (INSERT ... ON CONFLICT)

PostgreSQL's ON CONFLICT clause allows you to handle conflicts when inserting data, enabling "upsert" operations (insert if new, update if exists). AutoModel fully supports this pattern for both single-row and batch operations.

Understanding EXCLUDED

In the DO UPDATE clause, EXCLUDED is a special table reference provided by PostgreSQL that contains the row that would have been inserted if there had been no conflict. This allows you to reference the attempted insert values.

INSERT INTO users (email, name, age)
VALUES ('alice@example.com', 'Alice', 25)
ON CONFLICT (email)
DO UPDATE SET
  name = EXCLUDED.name,      -- Use the name from the VALUES clause
  age = EXCLUDED.age,        -- Use the age from the VALUES clause
  updated_at = NOW()         -- Set updated_at to current timestamp

In this example:

  • EXCLUDED.name refers to 'Alice' (the value being inserted)
  • EXCLUDED.age refers to 25 (the value being inserted)
  • users.name and users.age refer to the existing row's values in the table

You can also mix both references:

-- Only update if the new age is greater than the existing age
DO UPDATE SET age = EXCLUDED.age WHERE users.age < EXCLUDED.age

Single Row Upsert

Use ON CONFLICT to update existing rows when a conflict occurs:

queries/users/upsert_user.sql:

-- @automodel
--    description: Insert a new user or update if email already exists
--    expect: exactly_one
--    types:
--      profile: "crate::models::UserProfile"
-- @end

INSERT INTO users (email, name, age, profile)
VALUES (#{email}, #{name}, #{age}, #{profile})
ON CONFLICT (email) 
DO UPDATE SET 
  name = EXCLUDED.name,
  age = EXCLUDED.age,
  profile = EXCLUDED.profile,
  updated_at = NOW()
RETURNING id, email, name, age, created_at, updated_at

Usage:

use crate::generated::users::upsert_user;
use crate::models::UserProfile;

// First insert - creates new user
let user = upsert_user(
    &client,
    "alice@example.com".to_string(),
    "Alice".to_string(),
    25,
    UserProfile { bio: "Developer".to_string() }
).await?;

// Second call with same email - updates existing user
let updated_user = upsert_user(
    &client,
    "alice@example.com".to_string(),
    "Alice Smith".to_string(),  // Updated name
    26,                          // Updated age
    UserProfile { bio: "Senior Developer".to_string() }
).await?;

// Same ID, but updated fields
assert_eq!(user.id, updated_user.id);

Batch Upsert with UNNEST

Combine UNNEST with ON CONFLICT for efficient batch upserts:

queries/users/upsert_users_batch.sql:

-- @automodel
--    description: Batch upsert users - insert new or update existing by email
--    expect: multiple
--    multiunzip: true
-- @end

INSERT INTO users (email, name, age)
SELECT * FROM UNNEST(
  #{email}::text[],
  #{name}::text[],
  #{age}::int4[]
)
ON CONFLICT (email)
DO UPDATE SET
  name = EXCLUDED.name,
  age = EXCLUDED.age,
  updated_at = NOW()
RETURNING id, email, name, age, created_at, updated_at

Usage:

use crate::generated::users::{upsert_users_batch, UpsertUsersBatchRecord};

let users = vec![
    UpsertUsersBatchRecord {
        email: "alice@example.com".to_string(),
        name: "Alice".to_string(),
        age: 25,
    },
    UpsertUsersBatchRecord {
        email: "bob@example.com".to_string(),
        name: "Bob".to_string(),
        age: 30,
    },
    UpsertUsersBatchRecord {
        email: "alice@example.com".to_string(),  // Duplicate - will update
        name: "Alice Updated".to_string(),
        age: 26,
    },
];

let results = upsert_users_batch(&client, users).await?;
// Returns 2 rows: Bob (new) and Alice (updated)
println!("Upserted {} users", results.len());

CLI Features

Commands

  • generate - Generate Rust code from YAML definitions

CLI Options

Generate Command

  • -d, --database-url <URL> - Database connection URL
  • -q, --queries-dir <DIR> - Directory containing SQL query files
  • -o, --output <FILE> - Custom output file path
  • -m, --module <NAME> - Module name for generated code
  • --dry-run - Preview generated code without writing files

Examples

The example-app/ directory contains:

  • queries/ - SQL files with query definitions organized by module
  • migrations/ - Database schema migrations for testing

Workspace Commands

# Build everything
cargo build

# Test the library
cargo test -p automodel-lib

# Run the CLI tool
cargo run -p automodel-cli -- [args...]

# Run the example app
cargo run -p example-app

# Check specific package
cargo check -p automodel-lib
cargo check -p automodel-cli

Error Handling and Custom Error Types

AutoModel provides sophisticated error handling with automatic constraint extraction and type-safe error types. Different types of queries return different error types based on whether they can violate database constraints.

Error Type Overview

AutoModel generates two types of error enums:

  1. ErrorReadOnly - For SELECT queries that cannot violate constraints
  2. Error<C> - For mutation queries (INSERT, UPDATE, DELETE) with constraint tracking

ErrorReadOnly - For Read-Only Queries

All SELECT queries return ErrorReadOnly, a simple error enum without constraint violation variants:

Generated Code:

#[derive(Debug)]
pub enum ErrorReadOnly {
    Database(sqlx::Error),
    RowNotFound,
}

impl From<sqlx::Error> for ErrorReadOnly {
    fn from(err: sqlx::Error) -> Self {
        ErrorReadOnly::Database(err)
    }
}

Example Usage:

- name: get_user_by_id
  sql: "SELECT id, name, email FROM users WHERE id = #{user_id}"
  expect: "exactly_one"
pub async fn get_user_by_id(
    executor: impl sqlx::Executor<'_, Database = sqlx::Postgres>,
    user_id: i32
) -> Result<GetUserByIdItem, super::ErrorReadOnly>  // Returns ErrorReadOnly

Error - For Mutation Queries

Mutation queries (INSERT, UPDATE, DELETE) return Error<C> where C is a query-specific constraint enum. This provides type-safe handling of constraint violations.

Automatic Constraint Extraction

AutoModel automatically extracts all constraints from your PostgreSQL database for each table referenced in mutation queries. This happens at build time by querying the PostgreSQL system catalogs.

Extracted Constraint Information:

  • Unique constraints - Including primary keys and unique indexes
  • Foreign key constraints - With referenced table and column information
  • Check constraints - With constraint expression
  • NOT NULL constraints - For columns that cannot be null

Example: For a users table with:

CREATE TABLE users (
    id SERIAL PRIMARY KEY,
    email TEXT UNIQUE NOT NULL,
    age INT CHECK (age >= 0),
    organization_id INT REFERENCES organizations(id)
);

AutoModel generates:

#[derive(Debug)]
pub enum InsertUserConstraints {
    UsersPkey,                    // PRIMARY KEY constraint
    UsersEmailKey,                // UNIQUE constraint on email
    UsersAgeCheck,                // CHECK constraint on age
    UsersOrganizationIdFkey,      // FOREIGN KEY to organizations
    UsersIdNotNull,               // NOT NULL constraint on id
    UsersEmailNotNull,            // NOT NULL constraint on email
}

impl TryFrom<ErrorConstraintInfo> for InsertUserConstraints {
    type Error = ();
    
    fn try_from(info: ErrorConstraintInfo) -> Result<Self, Self::Error> {
        match info.constraint_name.as_str() {
            "users_pkey" => Ok(InsertUserConstraints::UsersPkey),
            "users_email_key" => Ok(InsertUserConstraints::UsersEmailKey),
            "users_age_check" => Ok(InsertUserConstraints::UsersAgeCheck),
            "users_organization_id_fkey" => Ok(InsertUserConstraints::UsersOrganizationIdFkey),
            "users_id_not_null" => Ok(InsertUserConstraints::UsersIdNotNull),
            "users_email_not_null" => Ok(InsertUserConstraints::UsersEmailNotNull),
            _ => Err(()),  // Unknown constraints return error instead of panicking
        }
    }
}

The generic Error<C> type handles constraint violations gracefully:

pub enum Error<C: TryFrom<ErrorConstraintInfo>> {
    /// Contains Some(C) when constraint is recognized, None for unknown constraints
    /// The ErrorConstraintInfo always contains the raw constraint details from PostgreSQL
    ConstraintViolation(Option<C>, ErrorConstraintInfo),
    RowNotFound,
    PoolTimeout,
    InternalError(String, sqlx::Error),
}

Custom Error Type Names with error_type

By default, AutoModel generates error type names based on the query name (e.g., InsertUserConstraints). You can customize this using the error_type configuration option.

Basic Usage:

- name: insert_user
  sql: "INSERT INTO users (email, name, age) VALUES (#{email}, #{name}, #{age}) RETURNING id"
  error_type: "UserError"  # Custom name instead of InsertUserConstraints

Generated Code:

#[derive(Debug)]
pub enum UserError {
    UsersPkey,
    UsersEmailKey,
    UsersAgeCheck,
    // ... other constraints
}

impl TryFrom<ErrorConstraintInfo> for UserError {
    type Error = ();
    fn try_from(info: ErrorConstraintInfo) -> Result<Self, Self::Error> {
        // ... conversion logic
    }
}

pub async fn insert_user(
    executor: impl sqlx::Executor<'_, Database = sqlx::Postgres>,
    email: String,
    name: String,
    age: i32
) -> Result<i32, super::Error<UserError>>  // Uses custom UserError

Error Type Reuse

Multiple queries that operate on the same table(s) can reuse the same error type. AutoModel validates at build time that the constraints match exactly.

Example:

queries:
  # First query generates the error type
  - name: insert_user
    sql: "INSERT INTO users (email, name, age) VALUES (#{email}, #{name}, #{age}) RETURNING id"
    error_type: "UserError"
  
  # Second query reuses the same error type
  - name: update_user_email
    sql: "UPDATE users SET email = #{email} WHERE id = #{user_id} RETURNING id"
    error_type: "UserError"  # Reuses UserError - constraints must match
  
  # Third query also reuses it
  - name: upsert_user
    sql: |
      INSERT INTO users (email, name, age) VALUES (#{email}, #{name}, #{age})
      ON CONFLICT (email) DO UPDATE SET name = EXCLUDED.name, age = EXCLUDED.age
      RETURNING id
    error_type: "UserError"  # Reuses UserError

Build-Time Validation:

AutoModel ensures that when you reuse an error type:

  1. The referenced error type exists (defined by a previous query)
  2. The constraints extracted for the current query exactly match the constraints in the reused type
  3. Both queries reference the same table(s)

Supported PostgreSQL Types

AutoModel supports a comprehensive set of PostgreSQL types with automatic mapping to Rust types. All types support Option<T> for nullable columns.

Boolean & Numeric Types

PostgreSQL Type Rust Type
BOOL bool
CHAR i8
INT2 (SMALLINT) i16
INT4 (INTEGER) i32
INT8 (BIGINT) i64
FLOAT4 (REAL) f32
FLOAT8 (DOUBLE PRECISION) f64
NUMERIC, DECIMAL rust_decimal::Decimal
OID, REGPROC, XID, CID u32
XID8 u64
TID (u32, u32)

String & Text Types

PostgreSQL Type Rust Type
TEXT String
VARCHAR String
CHAR(n), BPCHAR String
NAME String
XML String

Binary & Bit Types

PostgreSQL Type Rust Type
BYTEA Vec<u8>
BIT, BIT(n) bit_vec::BitVec
VARBIT bit_vec::BitVec

Date & Time Types

PostgreSQL Type Rust Type
DATE chrono::NaiveDate
TIME chrono::NaiveTime
TIMETZ sqlx::postgres::types::PgTimeTz
TIMESTAMP chrono::NaiveDateTime
TIMESTAMPTZ chrono::DateTime<chrono::Utc>
INTERVAL sqlx::postgres::types::PgInterval

Range Types

PostgreSQL Type Rust Type
INT4RANGE sqlx::postgres::types::PgRange<i32>
INT8RANGE sqlx::postgres::types::PgRange<i64>
NUMRANGE sqlx::postgres::types::PgRange<rust_decimal::Decimal>
TSRANGE sqlx::postgres::types::PgRange<chrono::NaiveDateTime>
TSTZRANGE sqlx::postgres::types::PgRange<chrono::DateTime<chrono::Utc>>
DATERANGE sqlx::postgres::types::PgRange<chrono::NaiveDate>

Multirange Types

PostgreSQL Type Rust Type
INT4MULTIRANGE serde_json::Value
INT8MULTIRANGE serde_json::Value
NUMMULTIRANGE serde_json::Value
TSMULTIRANGE serde_json::Value
TSTZMULTIRANGE serde_json::Value
DATEMULTIRANGE serde_json::Value

Network & Address Types

PostgreSQL Type Rust Type
INET std::net::IpAddr
CIDR std::net::IpAddr
MACADDR mac_address::MacAddress

Geometric Types

PostgreSQL Type Rust Type
POINT sqlx::postgres::types::PgPoint
LINE sqlx::postgres::types::PgLine
LSEG sqlx::postgres::types::PgLseg
BOX sqlx::postgres::types::PgBox
PATH sqlx::postgres::types::PgPath
POLYGON sqlx::postgres::types::PgPolygon
CIRCLE sqlx::postgres::types::PgCircle

JSON & Special Types

PostgreSQL Type Rust Type
JSON serde_json::Value
JSONB serde_json::Value
JSONPATH String
UUID uuid::Uuid

Array Types

All types support PostgreSQL arrays with automatic mapping to Vec<T>:

PostgreSQL Array Type Rust Type
BOOL[] Vec<bool>
INT2[], INT4[], INT8[] Vec<i16>, Vec<i32>, Vec<i64>
FLOAT4[], FLOAT8[] Vec<f32>, Vec<f64>
TEXT[], VARCHAR[] Vec<String>
BYTEA[] Vec<Vec<u8>>
UUID[] Vec<uuid::Uuid>
DATE[], TIMESTAMP[], TIMESTAMPTZ[] Vec<chrono::NaiveDate>, Vec<chrono::NaiveDateTime>, Vec<chrono::DateTime<chrono::Utc>>
INT4RANGE[], DATERANGE[], etc. Vec<sqlx::postgres::types::PgRange<T>>
And many more... See type mapping table above

Full-Text Search & System Types

PostgreSQL Type Rust Type
TSQUERY String
REGCONFIG, REGDICTIONARY, REGNAMESPACE, REGROLE, REGCOLLATION u32
PG_LSN u64
ACLITEM String

Custom Enum Types

PostgreSQL custom enums are automatically detected and mapped to generated Rust enums with proper encoding/decoding support. See the Configuration Options section for details on enum handling.

Requirements

  • PostgreSQL database (for actual code generation)
  • Rust 1.70+
  • tokio runtime

License

MIT License - see LICENSE file for details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages