Skip to content

Model X: A unified framework for entropy-syntropy balance (X = σ - S) in physical and informational systems, resolving asymptotic singularities without infinities. Open-source simulations and preprint included. Keywords:

License

Notifications You must be signed in to change notification settings

tiagohanna123/o

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Model X Framework v3.1

Hyperdimensional Framework for Universal Complexity Analysis

Python 3.7+ License: MIT Validation Score

📋 What's New in v3.1.0: Branch consolidation, astrophysical validations (GW150914, CMB, Quantum Computing), and IBM Quantum experiments! See the CHANGELOG for complete details.


Overview

The Model X Framework is a mathematical metatheory that models complex systems through fundamental relationships between:

  • Entropy (E): Measure of disorder/randomness (normalized Shannon)
  • Syntropy (S): Measure of organization/structure (complement of entropy)
  • Energy (ℰ): System modulating variable

Fundamental Equation

Φ(E, S, ℰ) = E × f(ℰ) + S × g(ℰ) = C (conservation constant)

Validation Results

Domain Score Status
Finance 100.0/100 ✓ Validated
Biology 82.8/100 ✓ Validated
Physics 91.1/100 ✓ Validated
Networks 98.2/100 ✓ Validated
Average 93.0/100 ✓ Excellence

Installation

Via pip (recommended)

pip install -e .

Dependencies

pip install numpy scipy matplotlib

For development

pip install -e ".[dev]"

Quick Start

Basic Example

from model_x import EnergyModulatedModel

# Create model with parameters
model = EnergyModulatedModel(
    entropy=0.4,      # Disorder level
    syntropy=0.6,     # Organization level
    energy=1.5        # System energy
)

# Calculate temporal dilation
dilation = model.compute_temporal_dilation()
print(f"Temporal dilation: {dilation:.4f}")

# Calculate energy modulation
f_E, g_S = model.compute_modulation()
print(f"Entropic modulation: {f_E:.4f}")
print(f"Syntropic modulation: {g_S:.4f}")

# Simulate temporal evolution
trajectory = model.simulate(steps=100, dt=0.01)

Advanced Analysis

from model_x import (
    EntropySyntropyCalculator,
    SimulationEngine,
    ValidationUtils
)

# Calculate entropy from real data
calculator = EntropySyntropyCalculator()
data = [1.2, 3.4, 2.1, 4.5, 3.2, 2.8, 3.9, 4.1]

entropy = calculator.calculate_shannon_entropy(data)
syntropy = calculator.calculate_syntropy(data)

print(f"Entropy: {entropy:.4f}")
print(f"Syntropy: {syntropy:.4f}")

# Run simulation
engine = SimulationEngine(dt=0.01, max_steps=1000)
initial_state = {
    'entropy': entropy,
    'syntropy': syntropy,
    'energy': 1.0
}

history = engine.run_simulation(initial_state, 'deterministic')
stats = engine.get_statistics()

print(f"Simulated steps: {stats['total_steps']}")
print(f"Average dilation: {stats['mean_dilation']:.4f}")

Architecture

model-x-framework/
├── src/model_x/
│   ├── __init__.py                  # Main API
│   ├── entropy_syntropy.py          # Entropy/syntropy calculations
│   ├── energy_modulation.py         # Energy modulation engine
│   ├── simulation_engine.py         # Temporal simulation
│   ├── visualization.py             # Visualization and export
│   ├── utils.py                     # Validation utilities
│   └── patterned_datasets.py        # Patterned datasets
├── tests/                           # Test suite (95 tests)
├── docs/                            # Complete documentation
├── examples/                        # Usage examples
└── data/                            # Validation datasets

Main Components

EntropySyntropyCalculator

Calculates normalized Shannon entropy and syntropy.

calculator = EntropySyntropyCalculator()
entropy = calculator.calculate_shannon_entropy(data)    # [0, 1]
syntropy = calculator.calculate_syntropy(data)          # [0, 1]

EnergyModulationEngine

Modulation engine with three modes: adaptive, conservative, and basic.

modulator = EnergyModulationEngine()
result = modulator.modulate_energy(entropy, syntropy, energy, 'adaptive')

SimulationEngine

Deterministic temporal simulation with state tracking.

engine = SimulationEngine(dt=0.01, max_steps=1000)
history = engine.run_simulation(state, 'deterministic')
stats = engine.get_statistics()

ValidationUtils

Utilities for validation and dataset creation.

utils = ValidationUtils()
datasets = utils.create_default_datasets()
metrics = utils.calculate_validation_metrics(results, expected)

Mathematical Foundations

Normalized Shannon Entropy

H(X) = -Σ p(x) × log₂(p(x)) / log₂(N)

Where N is the number of discretization bins.

Temporal Dilation

τ = τ₀ × (1 + (S - E) / ℰ)

Where τ₀ is the system's proper time.

Energy Modulation

f(ℰ) = 1 + α × (E / ℰ)
g(ℰ) = 1 + β × (S / ℰ)^γ

With default parameters: α=0.3, β=0.7, γ=1.5

Conservation Law

E(+) + E(-) + S(+) + S(-) + N = C

Tests

# Run all tests
python -m pytest tests/ -v

# With coverage
python -m pytest tests/ --cov=src/model_x

# Specific tests
python -m pytest tests/test_simulation_engine.py -v

Current coverage: 95 tests, all passing.


Documentation

Document Description
MATHEMATICAL_FOUNDATIONS.md Complete mathematical foundations
API Reference API reference
Getting Started Quick start guide
CHANGELOG Version history
Validation Report Validation report

Application Domains

The framework has been validated across multiple domains:

  1. Finance: Time series analysis of volatility
  2. Biology: Heart rhythm modeling (ECG)
  3. Physics: Oscillatory systems with harmonics
  4. Networks: Data traffic analysis
  5. Thermodynamics: Evolution of energy systems
  6. Quantum Computing: Qubit states (see quantum/)
  7. Cosmology: Universal expansion models

Additional Experiments

Astrophysical Validations (notebooks/)

  • GW150914: Gravitational wave validation (first direct detection 2015)

    • Script: notebooks/gw_validation.py
    • Maximum SNR (H1 detector): 7.4
    • Optimal κ: 0.0
  • CMB (Cosmic Microwave Background): Cosmic background radiation validation

    • Script: notebooks/cmb_validation.py
    • Data: data/planck_tt.txt (Planck data)
  • Quantum Computing: Quantum circuit validation

    • Script: notebooks/qc_validation.py

IBM Quantum Experiments (quantum/)

  • Experimental validation using IBM Quantum Experience
  • Main script: quantum/ibm_quantum_runner.py
  • Configuration: quantum/quantum_config.py
  • Documentation: quantum/README_QUANTUM.md
  • Results saved in: quantum/results/
# To run quantum experiments
cd quantum
pip install -r requirements_quantum.txt
python quantum_config.py  # Configure IBM Quantum credentials
python ibm_quantum_runner.py

Contributing

Contributions are welcome! See CONTRIBUTING.md for guidelines.

# Fork and clone
git clone https://github.com/your-username/o.git

# Create branch
git checkout -b feature/new-feature

# Install development dependencies
pip install -e ".[dev]"

# Run tests before committing
python -m pytest tests/ -v

Citation

If you use this framework in academic research:

@software{model_x_framework,
  author = {Hanna, Tiago},
  title = {Model X Framework: Hyperdimensional Theory of Universal Complexity},
  version = {3.1.0},
  year = {2025},
  url = {https://github.com/tiagohanna123/o}
}

Zenodo Archive

This repository is archived on Zenodo for permanent citation and preservation:

📦 View on Zenodo


License

MIT License - see LICENSE for details.


Contact

Author: Tiago Hanna Email: hanna@mkbl.com.br / tiagohv94@gmail.com GitHub: @tiagohanna123


Version: 3.1.0 Last Updated: November 2025 Status: Production/Stable - Validated at 93.0/100

About

Model X: A unified framework for entropy-syntropy balance (X = σ - S) in physical and informational systems, resolving asymptotic singularities without infinities. Open-source simulations and preprint included. Keywords:

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •