Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
268 changes: 268 additions & 0 deletions Tasks/daily tasks/Jamcey_V_P/task3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,268 @@
# keeping kernel size to 3 in the convultional layer
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim

transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)
)
]
)

trainset = torchvision.datasets.CIFAR10(
root='./data',
train=True,
download=False,
transform=transform
)

testset = torchvision.datasets.CIFAR10(
root='./data',
train=False,
download=False,
transform=transform
)

trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2
)

testloader = torch.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2
)

classes = (
'plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
)

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 3)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x


net = Net()

loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=0.001
)

for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# data = (inputs, labels)
inputs, labels = data
optimizer.zero_grad()

outputs = net(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()

running_loss = running_loss + loss.item()
if i % 2000 == 1999:
print(
'[%d, %5d] loss: %.3f' %
(epoch + 1, i+1, running_loss/2000)
)
running_loss = 0.0
print("vola")
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1


for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))


#Accuracy of plane : 53 %
#Accuracy of car : 71 %
#Accuracy of bird : 44 %
#Accuracy of cat : 52 %
#Accuracy of deer : 41 %
#Accuracy of dog : 32 %
#Accuracy of frog : 65 %
#Accuracy of horse : 65 %
#Accuracy of ship : 76 %
#Accuracy of truck : 36 % These accuray are changed to

#Accuracy of plane : 42 %
#Accuracy of car : 39 %
#Accuracy of bird : 18 %
#Accuracy of cat : 3 %
#Accuracy of deer : 6 %
#Accuracy of dog : 27 %
#Accuracy of frog : 64 %
#Accuracy of horse : 31 %
#Accuracy of ship : 46 %
#Accuracy of truck : 47 %

# keeping kernel size to 4 in the convultional layer
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import torch.optim as optim

transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)
)
]
)

trainset = torchvision.datasets.CIFAR10(
root='./data',
train=True,
download=False,
transform=transform
)

testset = torchvision.datasets.CIFAR10(
root='./data',
train=False,
download=False,
transform=transform
)

trainloader = torch.utils.data.DataLoader(
trainset,
batch_size=4,
shuffle=True,
num_workers=2
)

testloader = torch.utils.data.DataLoader(
testset,
batch_size=4,
shuffle=False,
num_workers=2
)

classes = (
'plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
)

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 3)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x


net = Net()

loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(
net.parameters(),
lr=0.001
)

for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# data = (inputs, labels)
inputs, labels = data
optimizer.zero_grad()

outputs = net(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()

running_loss = running_loss + loss.item()
if i % 2000 == 1999:
print(
'[%d, %5d] loss: %.3f' %
(epoch + 1, i+1, running_loss/2000)
)
running_loss = 0.0
print("vola")
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1


for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))


#Accuracy of plane : 40 %
#Accuracy of car : 48 %
#Accuracy of bird : 8 %
#Accuracy of cat : 9 %
#Accuracy of deer : 14 %
#Accuracy of dog : 37 %
#Accuracy of frog : 57 %
#Accuracy of horse : 40 %
#Accuracy of ship : 40 %
Accuracy of truck : 41 %