You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
A hands-on guide to automatic differentiation in TensorFlow using tf.GradientTape. Covers computing gradients for variables vs. constants, using tape.watch(), visualizing derivatives, and handling multiple parameters.
An end-to-end implementation of a custom training and validation loop for a CNN on the Fashion MNIST dataset. This project demonstrates low-level model training using tf.GradientTape and tf.keras.metrics, without relying on model.fit().
Implementation of Linear Regression using TensorFlow's low-level API with a custom tf.GradientTape training loop. Covers manual gradient computation, weight updates, and visualization of predictions vs actual values for educational understanding of core training mechanics.