The repo contains the code for the paper Task-based Adaptive Transmit Beamforming for Efficient Ultrasound Quantification.
Online transmit-scheme optimization designed to minimize uncertainty about downstream measurement parameters, enabling high quality estimates using a small fraction of the transmit events typically necessary.
Find the weights of our models on Huggingface:
Install zea, the cognitive ultrasound toolbox.
pip install "zea==0.0.4"or use the submodule in this repo:
git submodule update --init --recursive
pip install -e zeaInstall other dependencies for this repo:
KERAS_VER=$(python3 -c "import keras; print(keras.__version__)")
pip install tf2jax==0.3.6 pandas jaxwt dm-pix jax
pip install keras==${KERAS_VER}
cp .env.example .env
touch users.yaml # edit!-
Download the EchoNetLVH dataset.
-
Convert the dataset to the polar format using the
zeaconversion scripts described here.
See the zea example notebook implementing the task-based perception action loop, here.
