Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 76 additions & 0 deletions examples/quantization_w4a4_fp4/gpt_oss_example.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch.utils.data import DataLoader
import os
import torch

from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation

model_id = "openai/gpt-oss-20b"

model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)

# -----------------------------
# Create calibration dataloader
# -----------------------------
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 32
MAX_SEQUENCE_LENGTH = 2048

ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)

def preprocess(example):
return {
"text": tokenizer.apply_chat_template(
example["messages"],
tokenize=False,
)
}

ds = ds.map(preprocess)

def tokenize(sample):
return tokenizer(
sample["text"],
padding=False,
max_length=MAX_SEQUENCE_LENGTH,
truncation=True,
add_special_tokens=False,
)

ds = ds.map(tokenize, remove_columns=ds.column_names)
dataloader = DataLoader(ds, batch_size=1, shuffle=False)

# -----------------------------
# Quantization recipe
# -----------------------------
recipe = QuantizationModifier(
targets="Linear",
scheme="NVFP4",
ignore=["lm_head"],
)

SAVE_DIR = f"{model_id.split('/')[-1]}-NVFP4"

oneshot(
model=model,
tokenizer=tokenizer,
recipe=recipe,
dataset=ds,
trust_remote_code_model=True,
output_dir=SAVE_DIR,
)

# Save compressed
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
Loading