-
Notifications
You must be signed in to change notification settings - Fork 19
Add proper dalitz decays #41
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,161 @@ | ||
| c------------------------------------------------------------------------------ | ||
| real function vdmform(x,rmas,isw) ! VDM formfactor | ||
| real*4 x, rmas, dalit, rhom ! masses in MeV | ||
| real*4 f, delta | ||
| parameter (rhom=770.0) | ||
| C | ||
| vdmform = 0.0 | ||
| if (x.ge.rmas) return | ||
| if (x.lt.2.0*0.511) return | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I propose to use parameter for the electron mass (0.511). |
||
|
|
||
| f = sqrt(1.-4.*(0.511/x)**2) * (1.+2.*(0.511/x)**2) | ||
| if (isw.eq.1) then ! pseudo-scalar meson -> gamma e+ e- | ||
| dalit = ((1.-(x/rmas)**2)**3/(x/rmas))*1./(1.-(x/rhom)**2)**2 | ||
| vdmform = 8.2e-4*dalit*f | ||
| else if (isw.eq.2) then ! vector meson -> pi0 e+ e- | ||
| delta = (135.0/rmas)**2 | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please use parameter for the pi0 mass (135.0) |
||
| bracket = (1.+(x/rmas)**2/(1.-delta))**2 | ||
| + - 4.*(x/rmas)**2/(1.-delta)**2 | ||
| if(bracket.le.0.0) return | ||
| ff2 = 0.64**4/((0.65**2-(x/1000.)**2)**2 + (0.042*0.65)**2) | ||
| dalit = (bracket**1.5)/(x/rmas)*ff2 | ||
| vdmform = 8.2e-4*dalit*f | ||
| end if | ||
| C | ||
| return | ||
| end | ||
| c------------------------------------------------------------------------------ | ||
| real function qedform(x,rmas,isw) ! QED formfactor | ||
| real*4 x, rmas, dalit ! masses in MeV | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please add description of the function arguments. It is also helpful to add reference to the paper where the form-factors are taken from. |
||
| real*4 f, delta | ||
| C | ||
| qedform = 0.0 | ||
| if (x.ge.rmas) return | ||
| if (x.lt.2.0*0.511) return | ||
|
|
||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please use parameter for the electron mass (0.511) |
||
| f = sqrt(1.-4.*(0.511/x)**2) * (1.+2.*(0.511/x)**2) | ||
| if (isw.eq.1) then ! pseudo-scalar meson | ||
| dalit = ((1.-(x/rmas)**2)**3/(x/rmas)) | ||
| qedform = 8.2e-4*dalit*f | ||
| else if (isw.eq.2) then ! vector meson | ||
| delta = (135.0/rmas)**2 | ||
| bracket = (1.+(x/rmas)**2/(1.-delta))**2 | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please use parameter for the pi0 mass. |
||
| + - 4.*(x/rmas)**2/(1.-delta)**2 | ||
| if(bracket.le.0.0) return | ||
| dalit = (bracket**1.5)/(x/rmas) | ||
| qedform = 8.2e-4*dalit*f | ||
| end if | ||
| C | ||
| return | ||
| end | ||
| c------------------------------------------------------------------------------ | ||
|
|
||
| c------------------------------------------------------------------------------ | ||
| c Generation of 2 particle mass according to the VDM form factor | ||
| c for Dalitz decay of (id) 1=pi0 2=eta to (e+e-) gamma and 3=omega to pi0 e+e- | ||
| c------------------------------------------------------------------------------ | ||
|
|
||
| real function dalitz_evgen(id) | ||
| real xmin(3), xmax(3), wmax(3), mesonmass(3), rndm(2) | ||
| integer isw(3) | ||
| data mesonmass/134.9766,547.75,782.59/ | ||
| data isw/1,1,2/ | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is isw really /1,1,2/? Does it mean omega is discarded from the simulation? |
||
| data xstep/0.1/ | ||
| logical maxfound(3) | ||
| data maxfound/3*.FALSE./ | ||
| save maxfound, wmax | ||
|
|
||
| if (.NOT. maxfound(id)) then | ||
| wmax(id) = 0.0 | ||
| xmas = 0.0 | ||
| 1 xmas = xmas + xstep | ||
| ff = vdmform(xmas,mesonmass(id),isw(id)) | ||
| if (ff .gt. wmax(id)) wmax(id) = ff | ||
| if (xmas .lt. mesonmass(id)) goto 1 | ||
| maxfound(id) = .TRUE. | ||
| end if | ||
|
|
||
| 2 call grndm(rndm,2) | ||
| rnd1 = rndm(1)*mesonmass(id) | ||
| rnd2 = rndm(2)*wmax(id) | ||
| ff = vdmform(rnd1,mesonmass(id),isw(id)) | ||
| if (ff .lt. rnd2) goto 2 | ||
|
|
||
| dalitz_evgen = rnd1/1000. | ||
|
|
||
| return | ||
| end | ||
|
|
||
| c------------------------------------------------------------------------------ | ||
|
|
||
| SUBROUTINE GDALET(XM0,XM1,XM2,XM3,PCM,IDH) | ||
| C. | ||
|
Contributor
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Where does this function come from? It is good to add a comment to the description below. |
||
| C. ****************************************************************** | ||
| C. * * | ||
| C. * Dalitz decay of pi0, eta * | ||
| C. * * | ||
| C. * * | ||
| C. * ==>Called by : GDECAY * | ||
| C. * mod. from gdec3; including eta formfactor calc. in VDM) * | ||
| C. * W.Schoen 12.8.96 * | ||
| C. * tritouille par R.H. 24.3.97 and 28.8.97 and 22.8.2000 * | ||
| C. ****************************************************************** | ||
| IMPLICIT NONE | ||
| REAL FMASS, PI2, CT1, ST1, GINV, XINV, YINV | ||
| REAL BETINV, RC, Q1, Q2, Q3, G1, G2, EM, XM0, XM1, XM2, XM3 | ||
| REAL GAM, E1, E2, E3, PGSQ, CTST, STST, F1, F2 | ||
| REAL PCM(4,3) | ||
| REAL XMETA, RNDM(4) | ||
| INTEGER IDH | ||
| REAL dalitz_evgen | ||
| * | ||
|
|
||
| PI2 = 2.*3.141592654 | ||
| C-------------------------------------------------------- | ||
| C SIMULATION OF SECONDARY PARTICLE MOMENTA | ||
| C IN THE REST FRAME OF PARENT PARTICLE | ||
| C-------------------------------------------------------- | ||
| RC = (2.*XM2/(XM0-XM1))**2 | ||
| C XINV = HRNDM1(IDH)/1000. ! convert to GeV here | ||
|
|
||
| CALL GRNDM(RNDM,4) | ||
| XINV = dalitz_evgen(IDH) | ||
| XINV = (XINV/(XM0-XM1))**2 | ||
| YINV = SQRT(ABS(1. - RC/XINV))*(2.*RNDM(2) - 1.) | ||
| IF(RNDM(1).LT.0.5) YINV = -YINV | ||
| E2 = (XM0-XM1)*(XINV+1.+YINV*(1.-XINV))/4. | ||
| E3 = (XM0-XM1)*(XINV+1.-YINV*(1.-XINV))/4. | ||
| E1 = XM0-E2-E3 | ||
|
|
||
| Q3 = SQRT(E3*E3-XM2*XM3) | ||
| Q2 = SQRT(E2*E2-XM2*XM3) | ||
| Q1 = SQRT(E1*E1-XM1*XM1) | ||
| PGSQ = ( (XM0**2-XM1**2)*(1.-XINV)/(2.*XM0) )**2 | ||
| CTST = (PGSQ-Q3**2-Q2**2)/(2.*Q3*Q2) | ||
| STST = SQRT(ABS(1.-CTST**2)) | ||
|
|
||
| CT1 = 2.*RNDM(2)-1. | ||
| ST1 = SQRT(ABS(1.-CT1*CT1)) | ||
|
|
||
| F1 = PI2*RNDM(3) | ||
|
|
||
| PCM(1,3) = Q3*ST1*COS(F1) | ||
| PCM(2,3) = Q3*ST1*SIN(F1) | ||
| PCM(3,3) = Q3*CT1 | ||
| PCM(4,3) = E3 | ||
| F2 = PI2*RNDM(4) | ||
|
|
||
| PCM(1,2) = Q2*( STST*SIN(F2)*CT1*COS(F1) + STST*COS(F2)*SIN(F1) | ||
| & + CTST*ST1*COS(F1)) | ||
| PCM(2,2) = Q2*( STST*SIN(F2)*CT1*SIN(F1) - STST*COS(F2)*COS(F1) | ||
| & + CTST*ST1*SIN(F1)) | ||
| PCM(3,2) = Q2*(-STST*SIN(F2)*ST1 + CTST*CT1) | ||
| PCM(4,2) = E2 | ||
|
|
||
| PCM(1,1) = -PCM(1,3)-PCM(1,2) | ||
| PCM(2,1) = -PCM(2,3)-PCM(2,2) | ||
| PCM(3,1) = -PCM(3,3)-PCM(3,2) | ||
| PCM(4,1) = E1 | ||
|
|
||
| RETURN | ||
| END | ||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please add description of the function arguments. It is also helpful to add reference to the paper where the form-factors are taken from.