A quantitative trading framework with a focus on ICT (Inner Circle Trader) strategy implementation and market analysis.
-
ICT Strategy Implementation
- Fair Value Gap (FVG) detection
- Order Block identification
- Volume-based institutional activity analysis
- Market structure tracking
-
Data Sources
- Binance cryptocurrency data
- Yahoo Finance market data
- Extensible base class for additional sources
-
Configuration System
- Parameter validation with ranges
- Type checking and conversion utilities
- Strategy-specific configurations
-
Market Analysis
- Volatility clustering analysis
- Regime change detection
- Market microstructure analysis
- Cross-market dynamics
quantframe/
├── assets/ # Project assets and outputs
│ ├── images/ # Generated visualizations
│ │ ├── analysis/ # Market analysis charts
│ │ ├── backtest/ # Strategy backtest results
│ │ └── optimization/# Parameter optimization plots
│ └── logs/ # Application logs
├── config/ # Configuration management
├── data/ # Data source implementations
├── docs/ # Documentation
└── utils/ # Utility modules
- Clone the repository:
git clone https://github.com/wilson37wu/quantframe.git
cd quantframe- Install dependencies:
pip install -r requirements.txt- Configure your API keys in
.env:
cp .env.template .env
# Edit .env with your API keys- Run example strategies:
from quantframe.strategy.ict_strategy import ICTStrategy
from quantframe.config.ict_config import ICTConfig
# Create strategy instance
config = ICTConfig()
strategy = ICTStrategy(config)
# Run backtest
results = strategy.backtest('BTCUSDT', '2024-01-01', '2024-03-01')Detailed documentation is available in the docs/ directory:
- Fork the repository
- Create your feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.