Skip to content

wjalal/ORANGE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Modeling Tissue-Specific Aging Using Machine Learning

This repository contains the codebase for the undergraduate thesis titled Modeling Tissue-Specific Aging Using Machine Learning, conducted by Wasif Jalal and Mubasshira Musarrat at the Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, under the supervision of Dr. M. Sohel Rahman.

Data Requirements

Place the necessary tissue-specific expression data from Adult GTEx v10 in the following directories:

  • TPM Expression Data: gtex/datav10
  • Read Count Data: gtex/data

To process the data into our study's format, run proc/gtexv10_to_organage.sh.

Workflow

1. Initial Clustering

Run the following scripts:

  • gcttoCsv.py
  • Scripts in clustering/all_organ and clustering/per_organ

2. Optimal Fixed-Point Interpolation

  • true_age_interpolation.py
  • true_age_output_view.py

3. Feature Selection

(1) Correlation-Based Selection

  • pick_genes.py

(2) DeSeq-Based Selection

  • deg_thresholding.py
  • deg_thresh_finetune.py
  • Set the optimal threshold from finetuning results in pick_deg_optim.py

(3) Oh et al. Method

  • identify_organ_enriched_genes.py
    • Note: Artery Coronary and Aorta are treated as one organ.

4. Train-Test Splitting

  • stratified_split_dthhrdy.py

5. Model Training and Testing

  • train_gtex_all_<regr>.py
  • test_gtex_train.py
  • tissue_agegap_analytics_multi.py
  • Run: stf_sp_train_test_multi.sh

6. Leave-P-Out Train-Test for Downstream Analyses

  • Run: lpo_coeff_multi.sh
  • all_agegap_analytics_multi.py
  • agegap_lpo_stats.py

Usage

To reproduce the experiments, follow the steps outlined above in the correct order. Adjust script parameters as needed for specific analyses.


For any questions, feel free to open an issue or reach out!

About

Modeling Tissue-Specific Aging Using Machine Learning (Undergraduate Thesis)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 75.6%
  • Python 22.0%
  • C 1.4%
  • Shell 1.0%