from original google drive site:
fp32
sha256sum 4a5efbfb48b4081100544e75e1e2b57f8de3d84f213004b14b85fd4b3748db17 craft_mlt_25k.pth
md5sum 2f8227d2def4037cdb3b34389dcf9ec1 craft_mlt_25k.pth
and a converted fp16 version.
sha256sum deb270b9123830f2185a37bd391a59a414967914f883b802d79796b9b0631e40 craft_mlt_25k_fp16.pth
md5sum d44fa29e0243dc8751a0ce4b1036764b craft_mlt_25k_fp16.pth
(2025/06/04) onnx export script based on https://github.com/frk-tt/CRAFT-onnx/blob/main/craft2onnx.py
...
image = imgproc.loadImage("tests/mytest.jpg")
#print(image.shape)
image = image[0:640, 0:320]
# preprocessing
x = imgproc.normalizeMeanVariance(image)
x = torch.from_numpy(x).permute(2, 0, 1) # [h, w, c] to [c, h, w]
x = Variable(x.unsqueeze(0)) # [c, h, w] to [b, c, h, w]
shape_dict = {
'input': {
0: 'batch_size',
2: 'height',
3: 'width',
},
# variable lenght axes
'output_0': [1, 2], 'output_1': [2, 3]
}
torch.onnx.export(net,
x,
'craft_mlt_.onnx',
input_names=['input'],
output_names=['output_0', 'output_1'],
export_params=True,
opset_version=10, # opset_version=11 may not work with onnx2tf
do_constant_folding=True,
dynamic_axes=shape_dict,
#verbose=True,
verbose=False,
)sha256:225285114741baecefc0380d4373eb1dfffab617069e413f9baa2e18da6430c7 craft_mlt_25k.onnx