Cascade is a production-ready, high-performance, and low-latency audio stream processing library designed for Voice Activity Detection (VAD). Built upon the excellent Silero VAD model, Cascade significantly reduces VAD processing latency while maintaining high accuracy through its 1:1:1 binding architecture and asynchronous streaming technology.
Based on our latest streaming VAD performance tests with different chunk sizes:
Chunk Size (bytes) | Processing Time (ms) | Throughput (chunks/sec) | Total Test Time (s) | Speech Segments |
---|---|---|---|---|
1024 | 0.66 | 92.2 | 3.15 | 2 |
4096 | 1.66 | 82.4 | 0.89 | 2 |
8192 | 2.95 | 72.7 | 0.51 | 2 |
Metric | Value | Description |
---|---|---|
Best Processing Speed | 0.66ms/chunk | Optimal performance with 1024-byte chunks |
Peak Throughput | 92.2 chunks/sec | Maximum processing throughput |
Success Rate | 100% | Processing success rate across all tests |
Accuracy | High | Guaranteed by the Silero VAD model |
Architecture | 1:1:1:1 | Independent model per processor instance |
- Excellent performance across chunk sizes: High throughput and low latency with various chunk sizes
- Real-time capability: Sub-millisecond processing enables real-time applications
- Scalability: Linear performance scaling with independent processor instances
- Lock-Free Design: The 1:1:1 binding architecture eliminates lock contention, boosting performance.
- Frame-Aligned Buffer: A highly efficient buffer optimized for 512-sample frames.
- Asynchronous Streaming: Non-blocking audio stream processing based on
asyncio
. - Memory Optimization: Zero-copy design, object pooling, and cache alignment.
- Concurrency Optimization: Dedicated threads, asynchronous queues, and batch processing.
- Modular Design: A component architecture with high cohesion and low coupling.
- Interface Abstraction: Dependency inversion through interface-based design.
- Type System: Data validation and type checking using Pydantic.
- Comprehensive Testing: Unit, integration, and performance tests.
- Code Standards: Adherence to PEP 8 style guidelines.
- Error Handling: Robust error handling and recovery mechanisms.
- Resource Management: Automatic cleanup and graceful shutdown.
- Monitoring Metrics: Real-time performance monitoring and statistics.
- Scalability: Horizontal scaling by increasing the number of instances.
- Stability Assurance: Handles boundary conditions and exceptional cases gracefully.
Cascade employs a 1:1:1:1 independent architecture to ensure optimal performance and thread safety.
graph TD
Client --> StreamProcessor
subgraph "1:1:1:1 Independent Architecture"
StreamProcessor --> |per connection| IndependentProcessor[Independent Processor Instance]
IndependentProcessor --> |independent loading| VADModel[Silero VAD Model]
IndependentProcessor --> |independent management| VADIterator[VAD Iterator]
IndependentProcessor --> |independent buffering| FrameBuffer[Frame-Aligned Buffer]
IndependentProcessor --> |independent state| StateMachine[State Machine]
end
subgraph "Asynchronous Processing Flow"
VADModel --> |asyncio.to_thread| VADInference[VAD Inference]
VADInference --> StateMachine
StateMachine --> |None| SingleFrame[Single Frame Output]
StateMachine --> |start| Collecting[Start Collecting]
StateMachine --> |end| SpeechSegment[Speech Segment Output]
end
pip install cascade-vad
OR
# Using uv is recommended
uv venv -p 3.12
source .venv/bin/activate
# Install from PyPI (recommended)
pip install cascade-vad
# Or install from source
git clone https://github.com/xucailiang/cascade.git
cd cascade
pip install -e .
import cascade
import asyncio
async def basic_example():
"""A basic usage example."""
# Method 1: Simple file processing
async for result in cascade.process_audio_file("audio.wav"):
if result.result_type == "segment":
segment = result.segment
print(f"π€ Speech Segment: {segment.start_timestamp_ms:.0f}ms - {segment.end_timestamp_ms:.0f}ms")
else:
frame = result.frame
print(f"π Single Frame: {frame.timestamp_ms:.0f}ms")
# Method 2: Stream processing
async with cascade.StreamProcessor() as processor:
async for result in processor.process_stream(audio_stream):
if result.result_type == "segment":
segment = result.segment
print(f"π€ Speech Segment: {segment.start_timestamp_ms:.0f}ms - {segment.end_timestamp_ms:.0f}ms")
else:
frame = result.frame
print(f"π Single Frame: {frame.timestamp_ms:.0f}ms")
asyncio.run(basic_example())
from cascade.stream import StreamProcessor, create_default_config
async def advanced_example():
"""An advanced configuration example."""
# Custom configuration
config = create_default_config(
vad_threshold=0.7, # Higher detection threshold
max_instances=3, # Max 3 concurrent instances
buffer_size_frames=128 # Larger buffer
)
# Use the custom config
async with StreamProcessor(config) as processor:
# Process audio stream
async for result in processor.process_stream(audio_stream, "my-stream"):
# Process results...
pass
# Get performance statistics
stats = processor.get_stats()
print(f"Processing Stats: {stats.summary()}")
print(f"Throughput: {stats.throughput_chunks_per_second:.1f} chunks/sec")
asyncio.run(advanced_example())
# Run basic integration tests
python tests/test_simple_vad.py -v
# Run simulated audio stream tests
python tests/test_stream_vad.py -v
# Run performance benchmark tests
python tests/benchmark_performance.py
Test Coverage:
- β Basic API Usage
- β Stream Processing
- β File Processing
- β Real Audio VAD
- β Automatic Speech Segment Saving
- β 1:1:1:1 Architecture Validation
- β Performance Benchmarks
- β FrameAlignedBuffer Tests
We provide a complete WebSocket-based web demonstration that showcases Cascade's real-time VAD capabilities with multiple client support.
- Real-time Audio Processing: Capture audio from browser microphone and process with VAD
- Live VAD Visualization: Real-time display of VAD detection results
- Speech Segment Management: Display detected speech segments with playback support
- Dynamic VAD Configuration: Adjust VAD parameters in real-time
- Multi-client Support: Independent Cascade instances for each WebSocket connection
# Start backend server
cd web_demo
python server.py
# Start frontend (in another terminal)
cd web_demo/frontend
pnpm install && pnpm dev
For detailed setup instructions, see Web Demo Documentation.
-
Resource Allocation
- Each instance uses approximately 50MB of memory.
- Recommended: 2-3 instances per CPU core.
- Monitor memory usage to prevent Out-of-Memory (OOM) errors.
-
Performance Tuning
- Adjust
max_instances
to match server CPU cores. - Increase
buffer_size_frames
for higher throughput. - Tune
vad_threshold
to balance accuracy and sensitivity.
- Adjust
-
Error Handling
- Implement retry mechanisms for transient errors.
- Use health checks to monitor service status.
- Log detailed information for troubleshooting.
# Get performance monitoring metrics
stats = processor.get_stats()
# Key monitoring metrics
print(f"Active Instances: {stats.active_instances}/{stats.total_instances}")
print(f"Average Processing Time: {stats.average_processing_time_ms}ms")
print(f"Success Rate: {stats.success_rate:.2%}")
print(f"Memory Usage: {stats.memory_usage_mb:.1f}MB")
- Python: 3.12 (recommended)
- pydantic: 2.4.0+ (Data validation)
- numpy: 1.24.0+ (Numerical computation)
- scipy: 1.11.0+ (Signal processing)
- silero-vad: 5.1.2+ (VAD model)
- onnxruntime: 1.22.1+ (ONNX inference)
- torchaudio: 2.7.1+ (Audio processing)
- pytest: Testing framework
- black: Code formatter
- ruff: Linter
- mypy: Type checker
- pre-commit: Git hooks
We welcome community contributions! Please follow these steps:
- Fork the project and create a feature branch.
- Install development dependencies:
pip install -e .[dev]
- Run tests:
pytest
- Lint your code:
ruff check . && black --check .
- Type check:
mypy cascade
- Submit a Pull Request with a clear description of your changes.
This project is licensed under the MIT License - see the LICENSE file for details.
- Silero Team: For their excellent VAD model.
- PyTorch Team: For the deep learning framework.
- Pydantic Team: For the type validation system.
- Python Community: For the rich ecosystem.
- Author: Xucailiang
- Email: xucailiang.ai@gmail.com
- Project Homepage: https://github.com/xucailiang/cascade
- Issue Tracker: https://github.com/xucailiang/cascade/issues
- Documentation: https://cascade-vad.readthedocs.io/
β If you find this project helpful, please give it a star!