Skip to content

yash25112003/hackerTiger

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

6 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Advanced Multi-Agent Validation Team

A revolutionary, self-evolving, multi-agent deployment validation system using Google Agent Development Kit (ADK), Google Gemini LLMs, and advanced adversarial security concepts. This system implements field-tested red teaming, AI threat modeling, and resilience strategies inspired by Microsoft AI Red Team (PyRIT).

πŸš€ Features

Core Capabilities

  • Self-healing and trap-and-isolate defense against attacks
  • Continuous improvement through evolutionary optimizer agent
  • Parallel agent orchestration with session tracking
  • Best-in-class Red Team and threat modeling techniques
  • Full support for dynamic, extensible roles and agent evolution

Advanced Security

  • Microsoft Red Team methodologies with PyRIT-inspired capabilities
  • Bug bar scoring and vulnerability assessment
  • Adversarial testing with automated attack simulation
  • Anomaly detection using ML/telemetry-based analysis
  • Threat modeling against ML threat taxonomy

Compliance & Ethics

  • Regulatory compliance (GDPR, SOC2, HIPAA, etc.)
  • AI ethics validation with fairness and transparency checks
  • Privacy protection with PII and sensitive data detection
  • Authorization verification with role-based access control

πŸ—οΈ Architecture

System Constitution

The system operates under immutable, non-negotiable principles:

  • Immutability: Validated blocks and audit logs cannot change
  • Zero-Trust: Success only after quorum of agents passes
  • Parallel Validation: All agents run concurrently for speed & resilience
  • Trap-and-Isolate: High-confidence threats trigger sandboxing
  • Session Coherence: All analysis tied to unique session_id

Agent Team

1. Security Agent (Securo-Sentinel)

  • Role: Finds vulnerabilities using static and dynamic analysis
  • Capabilities: CVE scanning, bug bar scoring, exploit database analysis
  • Output: {'pass_status': bool, 'report': markdown, 'bug_bar_score': int}

2. Red Team Agent (Red-Team-Specter)

  • Role: Automated adversarial testing using PyRIT-like attack routines
  • Capabilities: Prompt injection, fuzzing, simulation attacks
  • Output: {'adversarial_results': list, 'risk_score': int}

3. Anomaly Detection Agent (Sentinel-Orbit)

  • Role: ML/telemetry-based anomaly detection
  • Capabilities: Behavioral analysis, statistical anomaly detection
  • Output: {'anomalies_found': list, 'severity': 1-10}

4. Threat Model Agent

  • Role: Models candidate against ML threat taxonomy
  • Capabilities: Microsoft threat modeling, attacker profile assessment
  • Output: Risk model and policy recommendations

5. Compliance Agent (Regulo-Guardian)

  • Role: Regulatory/policy compliance validation
  • Capabilities: GDPR, SOC2, data/privacy compliance checking
  • Output: {'pass_status': bool, 'compliance_report': list}

6. Authorization Agent (Auth-Warden)

  • Role: Enforces role-based access and verifies identity
  • Capabilities: Commit hash verification, author metadata validation
  • Output: {'pass_status': bool, 'authorization_summary': text}

7. Performance Agent (Perf-Maestro)

  • Role: Benchmarks and checks for regressions
  • Capabilities: Canary deployment telemetry analysis
  • Output: {'pass_status': bool, 'performance_report': text}

8. Explainability Agent (Lucid-Analyst)

  • Role: Explains other agents' verdicts in plain language
  • Capabilities: Audit and trust through clear explanations
  • Output: {'explanations': list}

9. Privacy Agent (Data-Sentry)

  • Role: Detect PII leaks and data exposures
  • Capabilities: Sensitive data scanning, privacy violation detection
  • Output: {'privacy_issues': list, 'severity': int}

10. Dependency Agent (DepAware)

  • Role: Analyzes upstream/deprecated supply chain risks
  • Capabilities: CVE scanning, deprecation analysis, maintenance assessment
  • Output: {'risk_dependencies': list, 'alternatives': list}

11. Ethical Agent (Ethos-Guardian)

  • Role: Checks for AI ethics, fairness, and rule-of-law compliance
  • Capabilities: Bias detection, fairness assessment, legal compliance
  • Output: {'ethical_concerns': list, 'legal_flags': list}

12. Evolutionary Optimizer Agent (Evo-Strategist)

  • Role: Optimizes validation parameters for safety, speed, reliability
  • Capabilities: Historical analysis, parameter optimization, performance tuning
  • Output: {'proposed_mutations': list}

13. Veto-Validator

  • Role: Aggregates all outputs and enforces consensus
  • Capabilities: Quorum enforcement, final verdict determination
  • Output: {'final_verdict': string, 'ledger_block': comprehensive session report}

πŸ› οΈ Installation

Prerequisites

  • Python 3.8+
  • Google Gemini API key(s)
  • Required Python packages (see requirements.txt)

Setup

  1. Clone the repository:
git clone <repository-url>
cd SunHacks
  1. Install dependencies:
pip install -r requirements.txt
  1. Configure environment variables:
cp env.example .env
# Edit .env with your Gemini API keys and configuration
  1. Run the system:
python main.py

πŸ“‹ Configuration

Environment Variables

# Gemini API Configuration
GEMINI_API_KEYS=your_api_key_1,your_api_key_2,your_api_key_3
GEMINI_MODEL=gemini-1.5-pro
GEMINI_TEMPERATURE=0.1

# System Configuration
CONSENSUS_QUORUM_THRESHOLD=0.75
MAX_CONCURRENT_AGENTS=12
SESSION_TIMEOUT_SECONDS=300

# Security Configuration
ENABLE_RED_TEAM_TESTING=true
ENABLE_ADVERSARIAL_ANALYSIS=true
THREAT_MODELING_ENABLED=true

πŸš€ Usage

Basic Usage

import asyncio
from main import MultiAgentValidator

async def validate_deployment():
    validator = MultiAgentValidator()
    
    deployment_context = {
        "commit_hash": "abc123def456",
        "author_metadata": {
            "name": "John Doe",
            "email": "john.doe@example.com"
        },
        "code": "def hello_world():\n    print('Hello, World!')",
        "dependencies": {
            "requests": "2.28.0",
            "numpy": "1.21.0"
        }
    }
    
    result = await validator.validate_deployment(deployment_context)
    print(f"Final Verdict: {result['final_verdict']}")
    print(f"Consensus Score: {result['consensus_score']}")

asyncio.run(validate_deployment())

Advanced Usage

# Validate with specific agents
result = await validator.validate_deployment(
    deployment_context=deployment_context,
    agent_names=["Securo-Sentinel", "Red-Team-Specter", "Veto-Validator"],
    timeout_seconds=600
)

# Get system status
status = await validator.get_system_status()
print(f"System Status: {status['system_status']}")

πŸ”’ Security Features

Immutable Audit Logging

  • All agent actions logged with SHA256 hashing
  • Immutable records that cannot be modified
  • Comprehensive audit trails for compliance

Zero-Trust Architecture

  • No single agent can approve deployments
  • Quorum-based consensus required
  • Trap-and-isolate for high-confidence threats

Advanced Threat Detection

  • Microsoft Red Team methodologies
  • PyRIT-inspired adversarial testing
  • ML threat taxonomy assessment
  • Behavioral anomaly detection

πŸ“Š Monitoring & Analytics

Performance Metrics

  • Agent execution times
  • Success/failure rates
  • Consensus accuracy
  • Resource utilization

Health Monitoring

  • System status monitoring
  • Agent health checks
  • API key rotation
  • Session management

πŸ”§ Extensibility

Adding New Agents

  1. Create agent class inheriting from ValidatorAgent
  2. Implement required methods: validate(), get_prompt_template(), parse_response()
  3. Add agent to _initialize_agents() in main.py
  4. Update agent imports

Custom Validation Rules

  • Modify system_constitution.py for new rules
  • Update agent prompts for new requirements
  • Extend consensus logic in VetoValidator

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Implement your changes
  4. Add tests and documentation
  5. Submit a pull request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • Microsoft AI Red Team (PyRIT) for red teaming methodologies
  • Google Gemini for LLM capabilities
  • OpenAI for AI safety research
  • The open-source community for inspiration and tools

πŸ“ž Support

For questions, issues, or contributions:

  • Create an issue in the repository
  • Contact the development team
  • Check the documentation for common solutions

Note: This system is designed for advanced security validation and should be used responsibly. Always follow security best practices and comply with applicable regulations.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published