-
Notifications
You must be signed in to change notification settings - Fork 1
API Reference
Complete API reference for DVOACAP-Python. Classes and methods are organized by phase.
- Phase 1: Path Geometry
- Phase 2: Solar & Geomagnetic
- Phase 3: Ionospheric Profiles
- Phase 4: Raytracing
- Phase 5: Signal Predictions
- Utilities
Represents a geographic location with latitude and longitude.
Constructor:
GeographicPoint(lat: float, lon: float)
GeographicPoint.from_degrees(lat_deg: float, lon_deg: float)Attributes:
-
lat(float) - Latitude in radians -
lon(float) - Longitude in radians
Example:
from dvoacap import GeoPoint
# Create point from degrees
philadelphia = GeoPoint.from_degrees(40.0, -75.0)Utilities for great circle path calculations.
Static Methods:
PathGeometry.distance(p1: GeographicPoint, p2: GeographicPoint) -> float
PathGeometry.bearing(p1: GeographicPoint, p2: GeographicPoint) -> float
PathGeometry.midpoint(p1: GeographicPoint, p2: GeographicPoint) -> GeographicPointParameters:
-
p1,p2- Geographic points (start and end) - Returns: Distance in km, bearing in radians, or midpoint
Example:
from dvoacap import PathGeometry, GeoPoint
tx = GeoPoint.from_degrees(40.0, -75.0) # Philadelphia
rx = GeoPoint.from_degrees(51.5, -0.1) # London
distance_km = PathGeometry.distance(tx, rx)
bearing_rad = PathGeometry.bearing(tx, rx)
midpoint = PathGeometry.midpoint(tx, rx)Calculates solar position and illumination.
Methods:
SolarCalculator.compute_zenith_angle(
location: GeographicPoint,
utc_time: datetime
) -> float
SolarCalculator.compute_local_time(
location: GeographicPoint,
utc_time: datetime
) -> float
SolarCalculator.is_daytime(
location: GeographicPoint,
utc_time: datetime
) -> boolParameters:
-
location- Geographic point -
utc_time- UTC datetime - Returns: Zenith angle (radians), local time fraction (0-1), or boolean
Example:
from dvoacap import SolarCalculator, GeoPoint
from datetime import datetime
location = GeoPoint.from_degrees(40.0, -75.0)
utc = datetime(2025, 6, 15, 12, 0)
zenith = SolarCalculator.compute_zenith_angle(location, utc)
is_day = SolarCalculator.is_daytime(location, utc)Calculates Earth's magnetic field parameters.
Methods:
GeomagneticCalculator.compute_field(
location: GeographicPoint,
altitude_km: float,
date: datetime
) -> GeomagneticParametersReturns: GeomagneticParameters with:
-
mag_lat- Magnetic latitude (radians) -
mag_dip- Magnetic dip angle (radians) -
gyro_freq- Gyrofrequency (MHz) -
field_intensity- Total field strength (nT)
Example:
from dvoacap import GeomagneticCalculator, GeoPoint
from datetime import datetime
location = GeoPoint.from_degrees(40.0, -75.0)
params = GeomagneticCalculator.compute_field(
location,
altitude_km=300,
date=datetime(2025, 6, 15)
)
print(f"Magnetic latitude: {params.mag_lat:.2f} rad")
print(f"Gyrofrequency: {params.gyro_freq:.2f} MHz")CCIR/URSI ionospheric coefficient maps.
Constructor:
FourierMaps(data_dir: str = "DVoaData")Methods:
def set_conditions(
self,
month: int, # 1-12
ssn: float, # Sunspot number (0-200)
utc_fraction: float # 0-1 (0 = midnight, 0.5 = noon)
)
def compute_var_map(
self,
lat: float, # Latitude in radians
lon: float, # Longitude in radians
kind: VarMapKind
) -> Distribution # Returns median, upper decile, lower decileVarMapKind enum:
-
VarMapKind.F2- F2 layer critical frequency -
VarMapKind.ER- E layer critical frequency -
VarMapKind.FM3- M(3000)F2 propagation factor
Example:
from dvoacap import FourierMaps, VarMapKind
maps = FourierMaps()
maps.set_conditions(month=6, ssn=100, utc_fraction=0.5)
# Get foF2 at Philadelphia
fof2 = maps.compute_var_map(
lat=40.0 * 3.14159/180,
lon=-75.0 * 3.14159/180,
kind=VarMapKind.F2
)
print(f"foF2: {fof2.median:.2f} MHz")Point along propagation path with ionospheric parameters.
Attributes:
-
location- Geographic point -
e- E layer info (LayerInfo) -
f1- F1 layer info -
f2- F2 layer info -
es- Sporadic E info
LayerInfo fields:
-
fo- Critical frequency (MHz) -
hm- Peak height (km) -
ym- Semi-thickness (km)
Example:
from dvoacap import ControlPoint, FourierMaps, compute_iono_params
import math
maps = FourierMaps()
maps.set_conditions(month=6, ssn=100, utc_fraction=0.5)
pnt = ControlPoint(
location=GeographicPoint.from_degrees(40.0, -75.0),
east_lon=-75.0 * math.pi/180,
distance_rad=0.0,
local_time=0.5,
zen_angle=0.3,
zen_max=1.5,
mag_lat=50.0 * math.pi/180,
mag_dip=60.0 * math.pi/180,
gyro_freq=1.2
)
compute_iono_params(pnt, maps)
print(f"E layer: foE = {pnt.e.fo:.2f} MHz at {pnt.e.hm:.0f} km")
print(f"F2 layer: foF2 = {pnt.f2.fo:.2f} MHz at {pnt.f2.hm:.0f} km")Electron density profile vs altitude.
Methods:
def compute_profile(
self,
control_point: ControlPoint,
altitude_km: float
) -> float # Returns electron density (electrons/cm³)Example:
from dvoacap import IonosphericProfile
profile = IonosphericProfile(control_point)
# Get electron density at 300 km
density = profile.compute_profile(control_point, 300)
print(f"Electron density at 300 km: {density:.2e} e/cm³")Maximum Usable Frequency calculations.
Constructor:
MufCalculator(profile: IonosphericProfile)Methods:
def compute_circuit_muf(
self,
distance_km: float,
min_elevation_deg: float = 3.0
) -> CircuitMufCircuitMuf attributes:
-
muf- Maximum Usable Frequency (MHz) -
fot- Frequency of Optimum Traffic (MHz) -
hpf- High Probability Frequency (MHz) -
e_muf- E layer MUF -
f1_muf- F1 layer MUF -
f2_muf- F2 layer MUF
Example:
from dvoacap import MufCalculator
calc = MufCalculator(ionospheric_profile)
circuit = calc.compute_circuit_muf(distance_km=5000)
print(f"MUF: {circuit.muf:.2f} MHz")
print(f"FOT: {circuit.fot:.2f} MHz (optimum)")
print(f"HPF: {circuit.hpf:.2f} MHz (high reliability)")Ray path calculations through ionosphere.
Constructor:
Reflectrix(profile: IonosphericProfile)Methods:
def compute_modes(
self,
frequency_mhz: float,
distance_km: float
) -> List[ModeInfo]
def compute_skip_distance(
self,
frequency_mhz: float,
layer: str # 'E', 'F1', 'F2'
) -> floatModeInfo attributes:
-
mode- Mode name (e.g., '1F2', '2F2') -
hops- Number of hops -
layer- Reflection layer ('E', 'F1', 'F2') -
elevation_angle- Takeoff angle (degrees) -
virtual_height- Virtual reflection height (km)
Example:
from dvoacap import Reflectrix
reflx = Reflectrix(ionospheric_profile)
# Find all modes for 14 MHz, 5000 km path
modes = reflx.compute_modes(frequency_mhz=14.0, distance_km=5000)
for mode in modes:
print(f"Mode {mode.mode}: {mode.hops} hops, "
f"takeoff {mode.elevation_angle:.1f}°")
# Get skip distance for F2 layer at 28 MHz
skip = reflx.compute_skip_distance(frequency_mhz=28.0, layer='F2')
print(f"Skip distance: {skip:.0f} km")Atmospheric, galactic, and man-made noise calculations.
Constructor:
NoiseModel(
frequency_mhz: float,
location: GeographicPoint,
utc_time: datetime,
noise_type: str = "rural" # 'rural', 'suburban', 'urban'
)Methods:
def compute_noise(self) -> DistributionReturns: Distribution with median, upper, lower decile noise levels (dB)
Example:
from dvoacap import NoiseModel, GeoPoint
from datetime import datetime
location = GeoPoint.from_degrees(40.0, -75.0)
noise = NoiseModel(
frequency_mhz=14.2,
location=location,
utc_time=datetime(2025, 6, 15, 12, 0),
noise_type="suburban"
)
levels = noise.compute_noise()
print(f"Noise level: {levels.median:.1f} dB")Base class for antenna gain patterns.
Subclasses:
-
IsotropicAntenna- 0 dBi gain in all directions -
HalfWaveDipole- Dipole pattern (2.15 dBi gain) -
VerticalMonopole- Vertical antenna pattern - Custom antennas via subclassing
Methods:
def compute_gain(
self,
elevation_angle_deg: float,
azimuth_deg: float = 0
) -> float # Returns gain in dBiExample:
from dvoacap import HalfWaveDipole
dipole = HalfWaveDipole(height_m=10, orientation_deg=0)
gain = dipole.compute_gain(elevation_angle_deg=15)
print(f"Gain at 15°: {gain:.1f} dBi")Main prediction engine for complete propagation predictions.
Constructor:
PredictionEngine()Methods:
def predict(
self,
tx_lat: float, # Degrees
tx_lon: float, # Degrees
rx_lat: float, # Degrees
rx_lon: float, # Degrees
frequency: float, # MHz
utc_time: datetime,
ssn: float = 100, # Sunspot number
tx_power: float = 100, # Watts
tx_antenna_gain: float = 0, # dBi
rx_antenna_gain: float = 0 # dBi
) -> PredictionPrediction attributes:
-
muf- Maximum Usable Frequency (MHz) -
fot- Frequency of Optimum Traffic (MHz) -
snr- Signal-to-Noise Ratio (dB) -
signal_strength- Field strength (dBµV/m) -
reliability- Service probability (%) -
mode- Best propagation mode -
distance_km- Path distance
Example:
from dvoacap import PredictionEngine
from datetime import datetime
engine = PredictionEngine()
result = engine.predict(
tx_lat=40.0, tx_lon=-75.0, # Philadelphia
rx_lat=51.5, rx_lon=-0.1, # London
frequency=14.2, # 20m band
utc_time=datetime(2025, 6, 15, 12, 0),
ssn=100,
tx_power=100,
tx_antenna_gain=2.0
)
print(f"Distance: {result.distance_km:.0f} km")
print(f"MUF: {result.muf:.2f} MHz")
print(f"SNR: {result.snr:.1f} dB")
print(f"Reliability: {result.reliability:.0f}%")
print(f"Best mode: {result.mode}")Represents statistical distribution with median and deciles.
Attributes:
-
median- Median value (50th percentile) -
upper- Upper decile (90th percentile) -
lower- Lower decile (10th percentile)
Example:
from dvoacap import Distribution
dist = Distribution(median=10.0, upper=15.0, lower=5.0)
print(f"Range: {dist.lower:.1f} to {dist.upper:.1f} dB")from dvoacap import get_version_info, get_phase_status
version = get_version_info()
print(f"DVOACAP-Python v{version['version']}")
print(f"Progress: {version['progress']}")
status = get_phase_status()
for phase, desc in status.items():
print(f"{phase}: {desc}")from dvoacap import PredictionEngine
from datetime import datetime
# Initialize engine
engine = PredictionEngine()
# Configure transmitter and receiver
tx_lat, tx_lon = 40.0, -75.0 # Philadelphia
rx_lat, rx_lon = 51.5, -0.1 # London
# Run prediction for 20m band
result = engine.predict(
tx_lat=tx_lat,
tx_lon=tx_lon,
rx_lat=rx_lat,
rx_lon=rx_lon,
frequency=14.2,
utc_time=datetime(2025, 6, 15, 12, 0),
ssn=100,
tx_power=100,
tx_antenna_gain=2.0,
rx_antenna_gain=0.0
)
# Display results
print(f"Philadelphia → London Propagation Prediction")
print(f"=============================================")
print(f"Distance: {result.distance_km:>8.0f} km")
print(f"Frequency: {14.2:>8.1f} MHz")
print(f"MUF: {result.muf:>8.2f} MHz")
print(f"FOT: {result.fot:>8.2f} MHz")
print(f"SNR: {result.snr:>8.1f} dB")
print(f"Reliability: {result.reliability:>8.0f} %")
print(f"Best Mode: {result.mode}")Expected Output:
Philadelphia → London Propagation Prediction
=============================================
Distance: 5120 km
Frequency: 14.2 MHz
MUF: 18.50 MHz
FOT: 15.72 MHz
SNR: 25.3 dB
Reliability: 85 %
Best Mode: 2F2
DVOACAP-Python includes type hints throughout the codebase:
from typing import List, Tuple, Optional
from datetime import datetime
from dvoacap import GeographicPoint, ModeInfo, Distribution
def my_function(
location: GeographicPoint,
frequency: float,
utc: datetime
) -> Tuple[float, List[ModeInfo]]:
# Your code here
pass- Architecture - System design and module structure
- Getting Started - Installation and basic usage
- Integration Guide - Building applications with DVOACAP
- Examples Repository - More code examples
API Status: v1.0.0 Production Ready. API is stable.