Skip to content

Comparison Guide

github-actions[bot] edited this page Nov 18, 2025 · 2 revisions

Comparison Guide

Comparison of DVOACAP-Python with other HF propagation prediction methods.

Quick Comparison

Feature DVOACAP-Python Original VOACAP DVOACAP (Pascal) ITU P.533 WSPR/PSKReporter
Language Python FORTRAN Delphi/Pascal Reference/Math Data only
Platform Cross-platform Windows/DOS Windows N/A Web-based
Ease of Use ⭐⭐⭐⭐⭐ ⭐⭐ ⭐⭐⭐ ⭐⭐⭐⭐
Integration Native Python Limited Limited Manual API
Accuracy 85%* validated Reference High Reference standard Real-world
Speed ~500 ms Very fast Fast N/A Real-time data
Documentation Excellent Good Limited Excellent Limited
Active Development Yes (2025) No (legacy) No (2010s) Updated periodically Yes
Open Source MIT Yes (legacy) MPL 1.1 No Partial
Dashboard Yes (Flask) No Yes (Delphi) No Web UI

*Still completing Phase 5 validation


DVOACAP-Python

Description: Modern Python port of the DVOACAP ionospheric propagation model.

Strengths ✅

Modern Python Ecosystem

  • Native integration with NumPy, SciPy, Matplotlib
  • Works with Jupyter notebooks
  • Easy to integrate into web applications
  • Can be imported into any Python project

Excellent Documentation

  • Comprehensive Wiki
  • API reference
  • Code examples
  • Tutorial notebooks (planned)
  • Clear architecture documentation

Maintainability

  • Clean, readable code
  • Type hints throughout
  • Well-tested (80%+ target coverage)
  • Active development
  • Modern development practices

Flexibility

  • Installable via pip
  • Modular architecture
  • Can use individual components
  • Extensible antenna models
  • Customizable noise models

Dashboard

  • Modern web-based UI (Flask)
  • Interactive visualizations
  • DXCC tracking
  • Real-time updates
  • Mobile-responsive

Limitations ⚠️

Maturity

  • Still completing Phase 5 (signal predictions)
  • Reliability calculation has known bug
  • Limited real-world validation (WSPR planned)
  • Not yet at v1.0 release

Performance

  • Slower than compiled FORTRAN/Pascal (~500ms vs ~50ms)
  • Python overhead for tight loops
  • Can be improved with Numba/Cython

Compatibility

  • Not a drop-in replacement for original VOACAP
  • API differs from DVOACAP
  • Input/output formats different

When to Use

✓ Best for:

  • Python developers
  • Web application integration
  • Research and experimentation
  • Data science workflows
  • Teaching and education
  • Modern development projects
  • Custom analysis pipelines

✗ Less ideal for:

  • Production systems requiring 100% accuracy (wait for v1.0)
  • Ultra-low latency requirements (< 100ms)
  • Drop-in VOACAP replacement
  • Legacy FORTRAN integration

Original VOACAP

Description: Voice of America Coverage Analysis Program - the original FORTRAN implementation from the 1970s-1990s.

Strengths ✅

Gold Standard

  • Industry reference implementation
  • Extensively validated over decades
  • Used by professional organizations
  • Well-understood limitations

Performance

  • Very fast (compiled FORTRAN)
  • Optimized algorithms
  • Efficient memory usage

Comprehensive

  • Full feature set
  • Area coverage predictions
  • Point-to-point analysis
  • Multiple output formats

Limitations ⚠️

Legacy Code

  • FORTRAN 77 codebase
  • Difficult to modify
  • Limited documentation
  • Hard to integrate with modern systems

Platform

  • Primarily Windows/DOS
  • Command-line only
  • No modern GUI
  • Difficult to automate

Development

  • No active development
  • Legacy software
  • Bug fixes limited
  • No new features

When to Use

✓ Best for:

  • Validation reference
  • Production systems (proven reliability)
  • Official/regulatory requirements
  • When maximum accuracy is critical

✗ Less ideal for:

  • Modern application integration
  • Web services
  • Research requiring code modifications
  • Teaching (code hard to understand)

DVOACAP (VE3NEA Pascal Version)

Description: Alex Shovkoplyas (VE3NEA)'s Delphi/Pascal modernization of VOACAP.

Strengths ✅

Modernization

  • Cleaner code than FORTRAN
  • Modern Windows GUI
  • Interactive dashboard
  • Real-time visualization

Accuracy

  • Validated against original VOACAP
  • Reliable results
  • Well-tested

Usability

  • User-friendly interface
  • No command-line required
  • Visual feedback
  • Integrated tools

Limitations ⚠️

Platform Lock-in

  • Windows only (Delphi)
  • No Linux/macOS support
  • Desktop application (not web)

Integration

  • Limited API
  • Hard to integrate with other tools
  • Not embeddable

Development

  • Last updated ~2010s
  • Limited ongoing development
  • Small community

When to Use

✓ Best for:

  • Windows users
  • Amateur radio operators
  • Desktop application users
  • Visual analysis

✗ Less ideal for:

  • Web applications
  • Server-side processing
  • Non-Windows platforms
  • Programmatic integration

ITU-R Recommendation P.533

Description: International Telecommunication Union standard for HF propagation prediction.

Strengths ✅

International Standard

  • Official ITU recommendation
  • Used worldwide
  • Regularly updated
  • Well-documented mathematics

Comprehensive

  • Covers full prediction methodology
  • Multiple models for different scenarios
  • Scientific rigor
  • Peer-reviewed

Flexibility

  • Can be implemented in any language
  • Adaptable to specific needs
  • Not tied to specific software

Limitations ⚠️

Not Software

  • Mathematical specification only
  • Requires implementation
  • No ready-to-use code
  • Must validate your implementation

Complexity

  • Very detailed
  • Requires deep expertise
  • Difficult to implement correctly
  • Many edge cases

Updates

  • Infrequent updates
  • May lag behind research
  • Political consensus required

When to Use

✓ Best for:

  • Developing new propagation software
  • Official/regulatory compliance
  • Research requiring standards compliance
  • Understanding propagation theory

✗ Less ideal for:

  • Quick predictions
  • Amateur use
  • Production systems (need implementation first)

WSPR / PSKReporter

Description: Real-world propagation measurement networks using actual radio transmissions.

Strengths ✅

Real-World Data

  • Actual propagation measurements
  • Not predictions - reality!
  • Crowdsourced worldwide coverage
  • Live data

Validation

  • Can validate prediction models
  • Shows actual ionospheric conditions
  • Identifies anomalies
  • Real-time updates

Accessibility

  • Free to use
  • Web-based interface
  • API access
  • Large community

Limitations ⚠️

Reactive, Not Predictive

  • Shows what IS happening, not what WILL happen
  • Can't predict future conditions
  • Requires active transmissions
  • Coverage depends on participation

Incomplete Data

  • Not all paths covered
  • Frequency-dependent (WSPR typically 10m-160m)
  • Time-dependent (requires transmitters)
  • SNR reports vary by receiver quality

No Analysis Tools

  • Raw data only
  • Must process yourself
  • Limited historical analysis
  • No built-in prediction

When to Use

✓ Best for:

  • Validating predictions
  • Real-time propagation monitoring
  • Identifying current conditions
  • Research and analysis

✗ Less ideal for:

  • Future predictions
  • Paths with no coverage
  • Detailed analysis (need to build tools)

Head-to-Head Scenarios

Scenario 1: Amateur Radio Operator Planning a DX Contact

Best choice: DVOACAP (Pascal) or DVOACAP-Python

Why:

  • User-friendly interface
  • Quick predictions
  • Optimum frequency recommendations
  • Path visualization

Scenario 2: Professional Broadcaster Planning HF Service

Best choice: Original VOACAP

Why:

  • Industry standard
  • Proven accuracy
  • Regulatory acceptance
  • Comprehensive coverage analysis

Scenario 3: Researcher Studying Ionospheric Anomalies

Best choice: DVOACAP-Python

Why:

  • Python integration
  • Easy to modify algorithms
  • Jupyter notebook support
  • Can validate against WSPR data
  • Custom analysis pipelines

Scenario 4: Web Application Developer

Best choice: DVOACAP-Python

Why:

  • Native Python (Flask/Django integration)
  • REST API friendly
  • JSON output
  • Modern deployment (Docker, cloud)

Scenario 5: Real-Time Propagation Monitoring

Best choice: WSPR/PSKReporter

Why:

  • Actual real-time data
  • No prediction errors
  • Shows current conditions
  • Live updates

Scenario 6: Regulatory Compliance / Official Use

Best choice: Original VOACAP or ITU P.533

Why:

  • Official standards
  • Regulatory acceptance
  • Proven methodology
  • Extensive validation

Technical Comparison

Ionospheric Model

Aspect DVOACAP-Python VOACAP ITU P.533
CCIR/URSI Maps Yes Yes Yes
Solar Activity SSN SSN SSN/F10.7
Geomagnetic IGRF IGRF Various
Layer Models E, F1, F2, Es E, F1, F2, Es E, F1, F2, Es
Electron Density Quasi-parabolic Quasi-parabolic Multiple methods

Prediction Outputs

Output DVOACAP-Python VOACAP ITU P.533
MUF
FOT
SNR 🚧*
Reliability 🚧*
Signal Strength 🚧*
Path Geometry
Area Coverage ⏳ Planned

*Phase 5 in progress

Performance

Metric DVOACAP-Python VOACAP DVOACAP (Pascal)
Single Prediction ~500 ms ~50 ms ~100 ms
Area Scan (100 pts) ~30-60 sec ~5 sec ~10 sec
Memory Usage ~200 MB ~50 MB ~100 MB
Startup Time ~2 sec <1 sec ~1 sec

Migration Guide

From Original VOACAP

Differences:

  • Different API (Python vs FORTRAN)
  • Input format differs
  • Output format differs (JSON available)
  • Some advanced features not yet implemented

Migration steps:

  1. Install DVOACAP-Python
  2. Convert input files to Python API calls
  3. Validate results against VOACAP
  4. Adjust tolerances as needed
  5. Report any discrepancies

From DVOACAP (Pascal)

Similarities:

  • Similar architecture (5 phases)
  • Same underlying algorithms
  • Comparable accuracy

Differences:

  • Python API vs Delphi components
  • Different GUI (Flask vs Delphi)
  • Cross-platform vs Windows-only

Migration steps:

  1. Map Delphi components to Python classes
  2. Convert form-based UI to Flask/web
  3. Rewrite database access (if used)
  4. Test thoroughly

Accuracy Comparison

Validation Status

DVOACAP-Python vs VOACAP:

  • Phase 1 (Path Geometry): < 0.01% error
  • Phase 2 (Solar/Geomagnetic): < 0.1° error
  • Phase 3 (Ionosphere): < 5% error
  • Phase 4 (Raytracing): ±2 MHz MUF error
  • Phase 5 (Signal): 🚧 In validation

All vs ITU P.533:

  • VOACAP predates some P.533 updates
  • Generally comparable methodology
  • Some algorithmic differences

All vs Real-World (WSPR):

  • Typical SNR error: 10-15 dB (expected for models)
  • MUF predictions generally conservative
  • Reliability estimates vary widely

Choosing the Right Tool

Decision Tree

Need real-time data?
├─ Yes → WSPR/PSKReporter
└─ No → Continue

Need to integrate with Python?
├─ Yes → DVOACAP-Python
└─ No → Continue

Running on Linux/macOS?
├─ Yes → DVOACAP-Python or Original VOACAP (if can run)
└─ No → Continue

Need regulatory/official compliance?
├─ Yes → Original VOACAP or ITU P.533
└─ No → Continue

Want easy-to-use GUI?
├─ Yes → DVOACAP (Pascal) or DVOACAP-Python dashboard
└─ No → Continue

Need maximum speed?
├─ Yes → Original VOACAP
└─ No → DVOACAP-Python

Future Outlook

DVOACAP-Python Roadmap

Short-term (2025 Q1-Q2):

  • Complete Phase 5 validation
  • Fix reliability calculation
  • Expand test coverage
  • v1.0 release

Medium-term (2025 Q3-Q4):

  • WSPR validation integration
  • Performance optimization
  • Area coverage predictions
  • Enhanced dashboard

Long-term (2026+):

  • ITU P.533 compliance
  • Real-time data integration
  • Mobile app
  • Multi-user service

See NEXT_STEPS.md for details.


Summary

DVOACAP-Python:

  • Best for: Modern Python development, research, education
  • Status: 85% complete, Phase 5 in progress
  • Strength: Integration, documentation, maintainability

Original VOACAP:

  • Best for: Production use, regulatory compliance
  • Status: Stable, legacy
  • Strength: Proven accuracy, performance

DVOACAP (Pascal):

  • Best for: Windows users, GUI preference
  • Status: Mature, limited updates
  • Strength: Usability, visualization

ITU P.533:

  • Best for: Standards compliance, new implementations
  • Status: Current standard
  • Strength: Official specification

WSPR/PSKReporter:

  • Best for: Real-world validation, current conditions
  • Status: Active networks
  • Strength: Actual data, not predictions

References


Last Updated: 2025-11-18

Clone this wiki locally