Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 11 additions & 1 deletion validmind/tests/model_validation/sklearn/OverfitDiagnosis.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,6 +220,16 @@ def OverfitDiagnosis(
- May not capture more subtle forms of overfitting that do not exceed the threshold.
- Assumes that the binning of features adequately represents the data segments.
"""

numeric_and_categorical_feature_columns = (
datasets[0].feature_columns_numeric + datasets[0].feature_columns_categorical
)

if not numeric_and_categorical_feature_columns:
raise ValueError(
"No valid numeric or categorical columns found in features_columns"
)

is_classification = bool(datasets[0].probability_column(model))

if not metric:
Expand All @@ -246,7 +256,7 @@ def OverfitDiagnosis(
figures = []
results_headers = ["slice", "shape", "feature", metric]

for feature_column in datasets[0].feature_columns:
for feature_column in numeric_and_categorical_feature_columns:
bins = 10
if feature_column in datasets[0].feature_columns_categorical:
bins = len(train_df[feature_column].unique())
Expand Down
13 changes: 13 additions & 0 deletions validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py
Original file line number Diff line number Diff line change
Expand Up @@ -211,6 +211,19 @@ def WeakspotsDiagnosis(
improvement.
"""
feature_columns = features_columns or datasets[0].feature_columns
numeric_and_categorical_columns = (
datasets[0].feature_columns_numeric + datasets[0].feature_columns_categorical
)

feature_columns = [
col for col in feature_columns if col in numeric_and_categorical_columns
]

if not feature_columns:
raise ValueError(
"No valid numeric or categorical columns found in features_columns"
)

if not all(col in datasets[0].feature_columns for col in feature_columns):
raise ValueError(
"Column(s) provided in features_columns do not exist in the dataset"
Expand Down